ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-Archive Evolutionary Algorithm for Constrained Multi-Objective Optimization

156   0   0.0 ( 0 )
 نشر من قبل Ke Li Kl
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

When solving constrained multi-objective optimization problems, an important issue is how to balance convergence, diversity and feasibility simultaneously. To address this issue, this paper proposes a parameter-free constraint handling technique, two-archive evolutionary algorithm, for constrained multi-objective optimization. It maintains two co-evolving populations simultaneously: one, denoted as convergence archive, is the driving force to push the population toward the Pareto front; the other one, denoted as diversity archive, mainly tends to maintain the population diversity. In particular, to complement the behavior of the convergence archive and provide as much diversified information as possible, the diversity archive aims at exploring areas under-exploited by the convergence archive including the infeasible regions. To leverage the complementary effects of both archives, we develop a restricted mating selection mechanism that adaptively chooses appropriate mating parents from them according to their evolution status. Comprehensive experiments on a series of benchmark problems and a real-world case study fully demonstrate the competitiveness of our proposed algorithm, comparing to five state-of-the-art constrained evolutionary multi-objective optimizers.



قيم البحث

اقرأ أيضاً

264 - Jinjin Xu , Yaochu Jin , Wenli Du 2021
Data-driven optimization has found many successful applications in the real world and received increased attention in the field of evolutionary optimization. Most existing algorithms assume that the data used for optimization is always available on a central server for construction of surrogates. This assumption, however, may fail to hold when the data must be collected in a distributed way and is subject to privacy restrictions. This paper aims to propose a federated data-driven evolutionary multi-/many-objective optimization algorithm. To this end, we leverage federated learning for surrogate construction so that multiple clients collaboratively train a radial-basis-function-network as the global surrogate. Then a new federated acquisition function is proposed for the central server to approximate the objective values using the global surrogate and estimate the uncertainty level of the approximated objective values based on the local models. The performance of the proposed algorithm is verified on a series of multi/many-objective benchmark problems by comparing it with two state-of-the-art surrogate-assisted multi-objective evolutionary algorithms.
Over the last three decades, a large number of evolutionary algorithms have been developed for solving multiobjective optimization problems. However, there lacks an up-to-date and comprehensive software platform for researchers to properly benchmark existing algorithms and for practitioners to apply selected algorithms to solve their real-world problems. The demand of such a common tool becomes even more urgent, when the source code of many proposed algorithms has not been made publicly available. To address these issues, we have developed a MATLAB platform for evolutionary multi-objective optimization in this paper, called PlatEMO, which includes more than 50 multi-objective evolutionary algorithms and more than 100 multi-objective test problems, along with several widely used performance indicators. With a user-friendly graphical user interface, PlatEMO enables users to easily compare several evolutionary algorithms at one time and collect statistical results in Excel or LaTeX files. More importantly, PlatEMO is completely open source, such that users are able to develop new algorithms on the basis of it. This paper introduces the main features of PlatEMO and illustrates how to use it for performing comparative experiments, embedding new algorithms, creating new test problems, and developing performance indicators. Source code of PlatEMO is now available at: http://bimk.ahu.edu.cn/index.php?s=/Index/Software/index.html.
A preference based multi-objective evolutionary algorithm is proposed for generating solutions in an automatically detected knee point region. It is named Automatic Preference based DI-MOEA (AP-DI-MOEA) where DI-MOEA stands for Diversity-Indicator ba sed Multi-Objective Evolutionary Algorithm). AP-DI-MOEA has two main characteristics: firstly, it generates the preference region automatically during the optimization; secondly, it concentrates the solution set in this preference region. Moreover, the real-world vehicle fleet maintenance scheduling optimization (VFMSO) problem is formulated, and a customized multi-objective evolutionary algorithm (MOEA) is proposed to optimize maintenance schedules of vehicle fleets based on the predicted failure distribution of the components of cars. Furthermore, the customized MOEA for VFMSO is combined with AP-DI-MOEA to find maintenance schedules in the automatically generated preference region. Experimental results on multi-objective benchmark problems and our three-objective real-world application problems show that the newly proposed algorithm can generate the preference region accurately and that it can obtain better solutions in the preference region. Especially, in many cases, under the same budget, the Pareto optimal solutions obtained by AP-DI-MOEA dominate solutions obtained by MOEAs that pursue the entire Pareto front.
Benchmarking plays an important role in the development of novel search algorithms as well as for the assessment and comparison of contemporary algorithmic ideas. This paper presents common principles that need to be taken into account when consideri ng benchmarking problems for constrained optimization. Current benchmark environments for testing Evolutionary Algorithms are reviewed in the light of these principles. Along with this line, the reader is provided with an overview of the available problem domains in the field of constrained benchmarking. Hence, the review supports algorithms developers with information about the merits and demerits of the available frameworks.
Dynamic multi-objective optimization problems (DMOPs) remain a challenge to be settled, because of conflicting objective functions change over time. In recent years, transfer learning has been proven to be a kind of effective approach in solving DMOP s. In this paper, a novel transfer learning based dynamic multi-objective optimization algorithm (DMOA) is proposed called regression transfer learning prediction based DMOA (RTLP-DMOA). The algorithm aims to generate an excellent initial population to accelerate the evolutionary process and improve the evolutionary performance in solving DMOPs. When an environmental change is detected, a regression transfer learning prediction model is constructed by reusing the historical population, which can predict objective values. Then, with the assistance of this prediction model, some high-quality solutions with better predicted objective values are selected as the initial population, which can improve the performance of the evolutionary process. We compare the proposed algorithm with three state-of-the-art algorithms on benchmark functions. Experimental results indicate that the proposed algorithm can significantly enhance the performance of static multi-objective optimization algorithms and is competitive in convergence and diversity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا