ﻻ يوجد ملخص باللغة العربية
Over the last three decades, a large number of evolutionary algorithms have been developed for solving multiobjective optimization problems. However, there lacks an up-to-date and comprehensive software platform for researchers to properly benchmark existing algorithms and for practitioners to apply selected algorithms to solve their real-world problems. The demand of such a common tool becomes even more urgent, when the source code of many proposed algorithms has not been made publicly available. To address these issues, we have developed a MATLAB platform for evolutionary multi-objective optimization in this paper, called PlatEMO, which includes more than 50 multi-objective evolutionary algorithms and more than 100 multi-objective test problems, along with several widely used performance indicators. With a user-friendly graphical user interface, PlatEMO enables users to easily compare several evolutionary algorithms at one time and collect statistical results in Excel or LaTeX files. More importantly, PlatEMO is completely open source, such that users are able to develop new algorithms on the basis of it. This paper introduces the main features of PlatEMO and illustrates how to use it for performing comparative experiments, embedding new algorithms, creating new test problems, and developing performance indicators. Source code of PlatEMO is now available at: http://bimk.ahu.edu.cn/index.php?s=/Index/Software/index.html.
When solving constrained multi-objective optimization problems, an important issue is how to balance convergence, diversity and feasibility simultaneously. To address this issue, this paper proposes a parameter-free constraint handling technique, two
Data-driven optimization has found many successful applications in the real world and received increased attention in the field of evolutionary optimization. Most existing algorithms assume that the data used for optimization is always available on a
Dynamic multi-objective optimization problems (DMOPs) remain a challenge to be settled, because of conflicting objective functions change over time. In recent years, transfer learning has been proven to be a kind of effective approach in solving DMOP
Recently, more and more works have proposed to drive evolutionary algorithms using machine learning models.Usually, the performance of such model based evolutionary algorithms is highly dependent on the training qualities of the adopted models.Since
Multi-objective optimization problems are ubiquitous in real-world science, engineering and design optimization problems. It is not uncommon that the objective functions are as a black box, the evaluation of which usually involve time-consuming and/o