ترغب بنشر مسار تعليمي؟ اضغط هنا

Determination of spin Hall effect and spin diffusion length of Pt from self-consistent fitting of damping enhancement and inverse spin-orbit torque measurements

72   0   0.0 ( 0 )
 نشر من قبل Andrew Berger
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding the evolution of spin-orbit torque (SOT) with increasing heavy-metal thickness in ferromagnet/normal metal (FM/NM) bilayers is critical for the development of magnetic memory based on SOT. However, several experiments have revealed an apparent discrepancy between damping enhancement and damping-like SOT regarding their dependence on NM thickness. Here, using linewidth and phase-resolved amplitude analysis of vector network analyzer ferromagnetic resonance (VNA-FMR) measurements, we simultaneously extract damping enhancement and both field-like and damping-like inverse SOT in Ni$_{80}$Fe$_{20}$/Pt bilayers as a function of Pt thickness. By enforcing an interpretation of the data which satisfies Onsager reciprocity, we find that both the damping enhancement and damping-like inverse SOT can be described by a single spin diffusion length ($approx$ 4 nm), and that we can separate the spin pumping and spin memory loss (SML) contributions to the total damping. This analysis indicates that less than 40% of the angular momentum pumped by FMR through the Ni$_{80}$Fe$_{20}$/Pt interface is transported as spin current into the Pt. On account of the SML and corresponding reduction in total spin current available for spin-charge transduction in the Pt, we determine the Pt spin Hall conductivity ($sigma_mathrm{SH} = (2.36 pm 0.04)times10^6 Omega^{-1} mathrm{m}^{-1}$) and bulk spin Hall angle ($theta_mathrm{SH}=0.387 pm0.008$) to be larger than commonly-cited values. These results suggest that Pt can be an extremely useful source of SOT if the FM/NM interface can be engineered to minimize SML. Lastly, we find that self-consistent fitting of the damping and SOT data is best achieved by a model with Elliott-Yafet spin relaxation and extrinsic inverse spin Hall effect, such that both the spin diffusion length and spin Hall conductivity are proportional to the Pt charge conductivity.

قيم البحث

اقرأ أيضاً

Efficient generation of spin-orbit torques (SOTs) is central for the exciting field of spin-orbitronics. Platinum, the archetypal spin Hall material, has the potential to be an outstanding provider for spin-orbit torques due to its giant spin Hall co nductivity, low resistivity, high stabilities, and the ability to be compatible with CMOS circuits. However, pure clean-limit Pt with low resistivity still provides a low damping-like spin-orbit torque efficiency, which limits its practical applications. The efficiency of spin-orbit torque in Pt-based magnetic heterostructures can be improved considerably by increasing the spin Hall ratio of Pt and spin transmissivity of the interfaces. Here we reviews recent advances in understanding the physics of spin current generation, interfacial spin transport, and the metrology of spin-orbit torques, and summarize progress towards the goal of Pt-based spin-orbit torque memories and logic that are fast, efficient, reliable, scalable, and non-volatile.
We have studied the spin transport and the spin Hall effect as a function of temperature for platinum (Pt) and gold (Au) in lateral spin valve structures. First, by using the spin absorption technique, we extract the spin diffusion length of Pt and A u. Secondly, using the same devices, we have measured the spin Hall conductivity and analyzed its evolution with temperature to identify the dominant scattering mechanisms behind the spin Hall effect. This analysis confirms that the intrinsic mechanism dominates in Pt whereas extrinsic effects are more relevant in Au. Moreover, we identify and quantify the phonon-induced skew scattering. We show that this contribution to skew scattering becomes relevant in metals such as Au, with a low residual resistivity.
The dependence of the spin-pumping effect on the yttrium iron garnet (Y3Fe5O12, YIG) thickness detected by the inverse spin Hall effect (ISHE) has been investigated quantitatively. Due to the spin-pumping effect driven by the magnetization precession in the ferrimagnetic insulator YIG film a spin-polarized electron current is injected into the Pt layer. This spin current is transformed into electrical charge current by means of the ISHE. An increase of the ISHE-voltage with increasing film thickness is observed and compared to the theoretically expected behavior. The effective damping parameter of the YIG/Pt samples is found to be enhanced with decreasing YIG film thickness. The investigated samples exhibit a spin mixing conductance of g=(7.43 pm 0.36) times 10^{18} m^{-2} and a spin Hall angle of theta_{ISHE} = 0.009 pm 0.0008. Furthermore, the influence of nonlinear effects on the generated voltage and on the Gilbert damping parameter at high excitation powers are revealed. It is shown that for small YIG film thicknesses a broadening of the linewidth due to nonlinear effects at high excitation powers is suppressed because of a lack of nonlinear multi-magnon scattering channels. We have found that the variation of the spin-pumping efficiency for thick YIG samples exhibiting pronounced nonlinear effects is much smaller than the nonlinear enhancement of the damping.
We have proposed a method to synchronize multiple spin-transfer torque oscillators based on spin pumping, inverse spin Hall, and spin Hall effects. The proposed oscillator system consists of a series of nano-magnets in junction with a normal metal wi th high spin-orbit coupling, and an accumulative feedback loop. We conduct simulations to demonstrate the effect of modulated charge currents in the normal metal due to spin pumping from each nano-magnet. We show that the interplay between the spin Hall effect and inverse spin Hall effect results in synchronization of the nano-magnets.
Pure spin current based research is mostly focused on ferromagnet (FM)/heavy metal (HM) system. Because of the high spin orbit coupling (SOC) these HMs exhibit short spin diffusion length and therefore possess challenges for device application. Low S OC (elements of light weight) and large spin diffusion length make the organic semiconductors (OSCs) suitable for future spintronic applications. From theoretical model it is explained that, due to $pi$ - $sigma$ hybridization the curvature of the C$_{60}$ molecules may increase the SOC strength. Here, we have investigated spin pumping and inverse spin hall effect (ISHE) in CoFeB/C$_{60}$ bilayer system using coplanar wave guide based ferromagnetic resonance (CPW-FMR) set-up. We have performed angle dependent ISHE measurement to disentangle the spin rectification effects for example anisotropic magnetoresistance, anomalous Hall effect etc. Further, effective spin mixing conductance (g$_{eff}^{uparrowdownarrow}$) and spin Hall angle ($theta_{SH}$) for C$_{60}$ have been reported here. The evaluated value for $theta_{SH}$ is 0.055.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا