ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic trapping and coherent control of laser-cooled molecules

72   0   0.0 ( 0 )
 نشر من قبل Michael Tarbutt
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate coherent microwave control of the rotational, hyperfine and Zeeman states of ultracold CaF molecules, and the magnetic trapping of these molecules in a single, selectable quantum state. We trap about $5times 10^{3}$ molecules for 2 s at a temperature of 65(11) $mu$K and a density of $1.2 times 10^{5}$ cm$^{-3}$. We measure the state-specific loss rate due to collisions with background helium.

قيم البحث

اقرأ أيضاً

124 - N. J. Fitch , M. R. Tarbutt 2021
The last few years have seen rapid progress in the application of laser cooling to molecules. In this review, we examine what kinds of molecules can be laser cooled, how to design a suitable cooling scheme, and how the cooling can be understood and m odelled. We review recent work on laser slowing, magneto-optical trapping, sub-Doppler cooling, and the confinement of molecules in conservative traps, with a focus on the fundamental principles of each technique. Finally, we explore some of the exciting applications of laser-cooled molecules that should be accessible in the near term.
We report laser cooling and trapping of yttrium monoxide (YO) molecules in an optical lattice. We show that gray molasses cooling remains exceptionally efficient for YO molecules inside the lattice with a molecule temperature as low as 6.1(6) $mu$K. This approach has produced a trapped sample of 1200 molecules, with a peak spatial density of $sim1.2times10^{10}$ cm$^{-3}$, and a peak phase-space density of $sim3.1times10^{-6}$. By adiabatically ramping down the lattice depth, we cool the molecules further to 1.0(2) $mu$K, twenty times colder than previously reported for laser-cooled molecules in a trap.
We investigate cooling mechanisms in magneto-optically and magnetically trapped erbium. We find efficient sub-Doppler cooling in our trap, which can persist even in large magnetic fields due to the near degeneracy of two Lande g factors. Furthermore, a continuously loaded magnetic trap is demonstrated where we observe temperatures below 25 microkelvin. These favorable cooling and trapping properties suggest a number of scientific possibilities for rare-earth atomic physics, including narrow linewidth laser cooling and spectroscopy, unique collision studies, and degenerate bosonic and fermionic gases with long-range magnetic dipole coupling.
We report on the electrostatic trapping of neutral SrF molecules. The molecules are captured from a cryogenic buffer-gas beam source into the moving traps of a 4.5 m long traveling-wave Stark decelerator. The SrF molecules in $X^2Sigma^+(v=0, N=1)$ s tate are brought to rest as the velocity of the moving traps is gradually reduced from 190 m/s to zero. The molecules are held for up to 50 ms in multiple electric traps of the decelerator. The trapped packets have a volume (FWHM) of 1 mm$^{3}$ and a velocity spread of 5(1) m/s which corresponds to a temperature of $60(20)$ mK. Our result demonstrates a factor 3 increase in the molecular mass that has been Stark-decelerated and trapped. Heavy molecules (mass$>$100 amu) offer a highly increased sensitivity to probe physics beyond the Standard Model. This work significantly extends the species of neutral molecules of which slow beams can be created for collision studies, precision measurement and trapping experiments.
We introduce a scheme for deep laser cooling of molecules based on robust dark states at zero velocity. By simulating this scheme, we show it to be a widely applicable method that can reach the recoil limit or below. We demonstrate and characterise t he method experimentally, reaching a temperature of 5.4(7) $mu$K. We solve a general problem of measuring low temperatures for large clouds by rotating the phase-space distribution and then directly imaging the complete velocity distribution. Using the same phase-space rotation method, we rapidly compress the cloud. Applying the cooling method a second time, we compress both the position and velocity distributions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا