ترغب بنشر مسار تعليمي؟ اضغط هنا

Sub-Doppler laser cooling and magnetic trapping of erbium

150   0   0.0 ( 0 )
 نشر من قبل Andrew Berglund
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate cooling mechanisms in magneto-optically and magnetically trapped erbium. We find efficient sub-Doppler cooling in our trap, which can persist even in large magnetic fields due to the near degeneracy of two Lande g factors. Furthermore, a continuously loaded magnetic trap is demonstrated where we observe temperatures below 25 microkelvin. These favorable cooling and trapping properties suggest a number of scientific possibilities for rare-earth atomic physics, including narrow linewidth laser cooling and spectroscopy, unique collision studies, and degenerate bosonic and fermionic gases with long-range magnetic dipole coupling.



قيم البحث

اقرأ أيضاً

134 - M. Landini , S. Roy , L. Carcagni 2011
We investigate sub-Doppler laser cooling of bosonic potassium isotopes, whose small hyperfine splitting has so far prevented cooling below the Doppler temperature. We find instead that the combination of a dark optical molasses scheme that naturally arises in this kind of systems and an adiabatic ramping of the laser parameters allows to reach sub-Doppler temperatures for small laser detunings. We demonstrate temperatures as low as 25(3)microK and 47(5)microK in high-density samples of the two isotopes 39K and 41K, respectively. Our findings will find application to other atomic systems.
We propose a sub-Doppler laser cooling mechanism that takes advantage of the unique spectral features and extreme dispersion generated by the phenomenon of electromagnetically induced transparency (EIT). EIT is a destructive quantum interference phen omenon experienced by atoms with multiple internal quantum states when illuminated by laser fields with appropriate frequencies. By detuning the lasers slightly from the dark resonance, we observe that, within the transparency window, atoms can be subject to a strong viscous force, while being only slightly heated by the diffusion caused by spontaneous photon scattering. In contrast to other laser cooling schemes, such as polarization gradient cooling or EIT-sideband cooling, no external magnetic field or strong external confining potential is required. Using a semiclassical approximation, we derive analytically quantitative expressions for the steady-state temperature, which is confirmed by full quantum mechanical numerical simulations. We find that the lowest achievable temperatures approach the single-photon recoil energy. In addition to dissipative forces, the atoms are subject to a stationary conservative potential, leading to the possibility of spatial confinement. We find that under typical experimental parameters this effect is weak and stable trapping is not possible.
Complex molecular structure demands customized solutions to laser cooling by extending its general set of principles and practices. Yttrium monoxide (YO) has unique intramolecular interactions. The Fermi-contact interaction dominates over the spin-ro tation coupling, resulting in two manifolds of closely spaced states, with one of them possessing a negligible Lande g-factor. This unique energy level structure favors dual-frequency DC magneto-optical trapping (MOT) and gray molasses cooling (GMC). We report exceptionally robust cooling of YO at 4 $mu$K over a wide range of laser intensity, detunings (one and two-photon), and magnetic field. The magnetic insensitivity enables the spatial compression of the molecular cloud by alternating GMC and MOT under the continuous operation of the quadrupole magnetic field. A combination of these techniques produces a laser-cooled molecular sample with the highest phase space density in free space.
138 - Maxence Lepers 2013
Ultracold atoms confined in a dipole trap are submitted to a potential whose depth is proportional to the real part of their dynamic dipole polarizability. The atoms also experience photon scattering whose rate is proportional to the imaginary part o f their dynamic dipole polarizability. In this article we calculate the complex dynamic dipole polarizability of ground-state erbium, a rare-earth atom that was recently Bose-condensed. The polarizability is calculated with the sum-over-state formula inherent to second-order perturbation theory. The summation is performed on transition energies and transition dipole moments from ground-state erbium, which are computed using the Racah-Slater least-square fitting procedure provided by the Cowan codes. This allows us to predict 9 unobserved odd-parity energy levels of total angular momentum J=5, 6 and 7, in the range 25000-31000 cm-1 above the ground state. Regarding the trapping potential, we find that ground-state erbium essentially behaves like a spherically-symmetric atom, in spite of its large electronic angular momentum. We also find a mostly isotropic van der Waals interaction between two ground-state erbium atoms, characterized by a coefficient C_6^{iso}=1760 a.u.. On the contrary, the photon-scattering rate shows a pronounced anisotropy, since it strongly depends on the polarization of the trapping light.
Laser cooling on weak transitions is a useful technique for reaching ultracold temperatures in atoms with multiple valence electrons. However, for strongly magnetic atoms a conventional narrow-line magneto-optical trap (MOT) is destabilized by compet ition between optical and magnetic forces. We overcome this difficulty in Er by developing an unusual narrow-line MOT that balances optical and magnetic forces using laser light tuned to the blue side of a narrow (8 kHz) transition. The trap population is spin-polarized with temperatures reaching below 2 microkelvin. Our results constitute an alternative method for laser cooling on weak transitions, applicable to rare-earth-metal and metastable alkaline earth elements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا