ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep learning for inferring cause of data anomalies

61   0   0.0 ( 0 )
 نشر من قبل Fedor Ratnikov
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

Daily operation of a large-scale experiment is a resource consuming task, particularly from perspectives of routine data quality monitoring. Typically, data comes from different sub-detectors and the global quality of data depends on the combinatorial performance of each of them. In this paper, the problem of identifying channels in which anomalies occurred is considered. We introduce a generic deep learning model and prove that, under reasonable assumptions, the model learns to identify channels which are affected by an anomaly. Such model could be used for data quality manager cross-check and assistance and identifying good channels in anomalous data samples. The main novelty of the method is that the model does not require ground truth labels for each channel, only global flag is used. This effectively distinguishes the model from classical classification methods. Being applied to CMS data collected in the year 2010, this approach proves its ability to decompose anomaly by separate channels.

قيم البحث

اقرأ أيضاً

We show that density models describing multiple observables with (i) hard boundaries and (ii) dependence on external parameters may be created using an auto-regressive Gaussian mixture model. The model is designed to capture how observable spectra ar e deformed by hypothesis variations, and is made more expressive by projecting data onto a configurable latent space. It may be used as a statistical model for scientific discovery in interpreting experimental observations, for example when constraining the parameters of a physical model or tuning simulation parameters according to calibration data. The model may also be sampled for use within a Monte Carlo simulation chain, or used to estimate likelihood ratios for event classification. The method is demonstrated on simulated high-energy particle physics data considering the anomalous electroweak production of a $Z$ boson in association with a dijet system at the Large Hadron Collider, and the accuracy of inference is tested using a realistic toy example. The developed methods are domain agnostic; they may be used within any field to perform simulation or inference where a dataset consisting of many real-valued observables has conditional dependence on external parameters.
In statistical data assimilation (SDA) and supervised machine learning (ML), we wish to transfer information from observations to a model of the processes underlying those observations. For SDA, the model consists of a set of differential equations t hat describe the dynamics of a physical system. For ML, the model is usually constructed using other strategies. In this paper, we develop a systematic formulation based on Monte Carlo sampling to achieve such information transfer. Following the derivation of an appropriate target distribution, we present the formulation based on the standard Metropolis-Hasting (MH) procedure and the Hamiltonian Monte Carlo (HMC) method for performing the high dimensional integrals that appear. To the extensive literature on MH and HMC, we add (1) an annealing method using a hyperparameter that governs the precision of the model to identify and explore the highest probability regions of phase space dominating those integrals, and (2) a strategy for initializing the state space search. The efficacy of the proposed formulation is demonstrated using a nonlinear dynamical model with chaotic solutions widely used in geophysics.
167 - Alexander Glazov 2017
A method for correcting for detector smearing effects using machine learning techniques is presented. Compared to the standard approaches the method can use more than one reconstructed variable to infere the value of the unsmeared quantity on event b y event basis. The method is implemented using a sequential neural network with a categorical cross entropy as the loss function. It is tested on a toy example and is shown to satisfy basic closure tests. Possible application of the method for analysis of the data from high energy physics experiments is discussed.
Data-driven prediction and physics-agnostic machine-learning methods have attracted increased interest in recent years achieving forecast horizons going well beyond those to be expected for chaotic dynamical systems. In a separate strand of research data-assimilation has been successfully used to optimally combine forecast models and their inherent uncertainty with incoming noisy observations. The key idea in our work here is to achieve increased forecast capabilities by judiciously combining machine-learning algorithms and data assimilation. We combine the physics-agnostic data-driven approach of random feature maps as a forecast model within an ensemble Kalman filter data assimilation procedure. The machine-learning model is learned sequentially by incorporating incoming noisy observations. We show that the obtained forecast model has remarkably good forecast skill while being computationally cheap once trained. Going beyond the task of forecasting, we show that our method can be used to generate reliable ensembles for probabilistic forecasting as well as to learn effective model closure in multi-scale systems.
Data assimilation (DA) aims at optimally merging observational data and model outputs to create a coherent statistical and dynamical picture of the system under investigation. Indeed, DA aims at minimizing the effect of observational and model error, and at distilling the correct ingredients of its dynamics. DA is of critical importance for the analysis of systems featuring sensitive dependence on the initial conditions, as chaos wins over any finitely accurate knowledge of the state of the system, even in absence of model error. Clearly, the skill of DA is guided by the properties of dynamical system under investigation, as merging optimally observational data and model outputs is harder when strong instabilities are present. In this paper we reverse the usual angle on the problem and show that it is indeed possible to use the skill of DA to infer some basic properties of the tangent space of the system, which may be hard to compute in very high-dimensional systems. Here, we focus our attention on the first Lyapunov exponent and the Kolmogorov-Sinai entropy, and perform numerical experiments on the Vissio-Lucarini 2020 model, a recently proposed generalisation of the Lorenz 1996 model that is able to describe in a simple yet meaningful way the interplay between dynamical and thermodynamical variables.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا