ترغب بنشر مسار تعليمي؟ اضغط هنا

The stellar orbit distribution in present-day galaxies inferred from the CALIFA survey

393   0   0.0 ( 0 )
 نشر من قبل Ling Zhu MPIA
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Galaxy formation entails the hierarchical assembly of mass, along with the condensation of baryons and the ensuing, self-regulating star formation. The stars form a collisionless system whose orbit distribution retains dynamical memory that can constrain a galaxys formation history. The ordered-rotation dominated orbits with near maximum circularity $lambda_z simeq1$ and the random-motion dominated orbits with low circularity $lambda_z simeq0$ are called kinematically cold and kinematically hot, respectively. The fraction of stars on `cold orbits, compared to the fraction of stars on `hot orbits, speaks directly to the quiescence or violence of the galaxies formation histories. Here we present such orbit distributions, derived from stellar kinematic maps via orbit-based modelling for a well defined, large sample of 300 nearby galaxies. The sample, drawn from the CALIFA survey, includes the main morphological galaxy types and spans the total stellar mass range from $10^{8.7}$ to $10^{11.9}$ solar masses. Our analysis derives the orbit-circularity distribution as a function of galaxy mass, $p(lambda_z~|~M_star)$, and its volume-averaged total distribution, $p(lambda_z)$. We find that across most of the considered mass range and across morphological types, there are more stars on `warm orbits defined as $0.25le lambda_z le 0.8$ than on either `cold or `hot orbits. This orbit-based Hubble diagram provides a benchmark for galaxy formation simulations in a cosmological context.

قيم البحث

اقرأ أيضاً

We present a novel method to retrieve the chemical structure of galaxies using integral field spectroscopy data through the stellar Metallicity Distribution Function (MDF). This is the probability distribution of observing stellar populations having a metallicity $Z$. We apply this method to a set of $550$ galaxies from the CALIFA survey. We present the behaviour of the MDF as a function of the morphology, the stellar mass and the radial distance. We use the stellar metallicity radial profiles retrieved as the first moment of the MDF, as an internal test for our method. The gradients in these radial profiles are consistent with the known trends: they are negative in massive early-type galaxies and tend to positive values in less massive late-type ones. We find that these radial profiles may not convey the complex chemical structure of some galaxy types. Overall, low mass galaxies ($log{M_star/mathrm{M}_{odot}}leq10$) have broad MDFs ($sigma_Zsim1.0,$dex), with unclear dependence on their morphology. However this result is likely affected by under-represented bins in our sample. On the other hand, massive galaxies ($log{M_star/mathrm{M}_{odot}}geq11$) have systematically narrower MDFs ($sigma_Zleq0.2,$dex). We find a clear trend whereby the MDFs at $r_k/R_e>1.5$ have large variance. This result is consistent with sparse SFHs in medium/low stellar density regions. We further find there are multi-modal MDFs in the outskirts ($sim18,$per cent) and the central regions ($sim40,$per cent) of galaxies. This behaviour is linked to a fast chemical enrichment during early stages of the SFH, along with the posterior formation of a metal-poor stellar population.
While studies of gas-phase metallicity gradients in disc galaxies are common, very little has been done in the acquisition of stellar abundance gradients in the same regions. We present here a comparative study of the stellar metallicity and age dist ributions in a sample of 62 nearly face-on, spiral galaxies with and without bars, using data from the CALIFA survey. We measure the slopes of the gradients and study their relation with other properties of the galaxies. We find that the mean stellar age and metallicity gradients in the disc are shallow and negative. Furthermore, when normalized to the effective radius of the disc, the slope of the stellar population gradients does not correlate with the mass or with the morphological type of the galaxies. Contrary to this, the values of both age and metallicity at $sim$2.5 scale-lengths correlate with the central velocity dispersion in a similar manner to the central values of the bulges, although bulges show, on average, older ages and higher metallicities than the discs. One of the goals of the present paper is to test the theoretical prediction that non-linear coupling between the bar and the spiral arms is an efficient mechanism for producing radial migrations across significant distances within discs. The process of radial migration should flatten the stellar metallicity gradient with time and, therefore, we would expect flatter stellar metallicity gradients in barred galaxies. However, we do not find any difference in the metallicity or age gradients in galaxies with without bars. We discuss possible scenarios that can lead to this absence of difference.
Large-scale asymmetries in the stellar mass distribution in galaxies are believed to trace non-equilibrium situations in the luminous and/or dark matter component. These may arise in the aftermath of events like mergers, accretion, and tidal interact ions. These events are key in the evolution of galaxies. In this paper we quantify the large-scale lopsidedness of light distributions in 25155 galaxies at z < 0.06 from the Sloan Digital Sky Survey Data Release 4 using the m = 1 azimuthal Fourier mode. We show that the lopsided distribution of light is primarily due to a corresponding lopsidedness in the stellar mass distribution. Observational effects, such as seeing, Poisson noise, and inclination, introduce only small errors in lopsidedness for the majority of this sample. We find that lopsidedness correlates strongly with other basic galaxy structural parameters: galaxies with low concentration, stellar mass, and stellar surface mass density tend to be lopsided, while galaxies with high concentration, mass, and density are not. We find that the strongest and most fundamental relationship between lopsidedness and the other structural parameters is with the surface mass density. We also find, in agreement with previous studies, that lopsidedness tends to increase with radius. Both these results may be understood as a consequence of several factors. The outer regions of galaxies and low-density galaxies are more susceptible to tidal perturbations, and they also have longer dynamical times (so lopsidedness will last longer). They are also more likely to be affected by any underlying asymmetries in the dark matter halo.
133 - Reynier Peletier 2009
Although there are many more stellar population studies of elliptical and lenticular galaxies, studies of spiral galaxies are catching up, due to higher signal to noise data on one hand, and better analysis methods on the other. Here I start by discu ssing some modern methods of analyzing integrated spectra of spiral galaxies, and comparing them with traditional methods. I then discuss some recent developments in our understanding of the stellar content of spiral galaxies, and their associated dust content. I discuss star formation histories, radial stellar population gradients, and stellar populations in sigma drops.
We present initial results from a population synthesis model aimed at determining the star formation rate of the Milky-Way. We find that a total star formation rate of 0.68 to 1.45 Msun/yr is able to reproduce the observed number of young stellar obj ects in the Spitzer/IRAC GLIMPSE survey of the Galactic plane, assuming simple prescriptions for the 3D Galactic distributions of YSOs and interstellar dust, and using model SEDs to predict the brightness and color of the synthetic YSOs at different wavelengths. This is the first Galaxy-wide measurement derived from pre-main-sequence objects themselves, rather than global observables such as the total radio continuum, Halpha, or FIR flux. The value obtained is slightly lower than, but generally consistent with previously determined values. We will extend this method in the future to fit the brightness, color, and angular distribution of YSOs, and simultaneously make use of multiple surveys, to place constraints on the input assumptions, and reduce uncertainties in the star formation rate estimate. Ultimately, this will be one of the most accurate methods for determining the Galactic star formation rate, as it makes use of stars of all masses (limited only by sensitivity) rather than solely massive stars or indirect tracers of massive stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا