ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar Population gradients in galaxy discs from the CALIFA survey

201   0   0.0 ( 0 )
 نشر من قبل Patricia Sanchez-Blazquez
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

While studies of gas-phase metallicity gradients in disc galaxies are common, very little has been done in the acquisition of stellar abundance gradients in the same regions. We present here a comparative study of the stellar metallicity and age distributions in a sample of 62 nearly face-on, spiral galaxies with and without bars, using data from the CALIFA survey. We measure the slopes of the gradients and study their relation with other properties of the galaxies. We find that the mean stellar age and metallicity gradients in the disc are shallow and negative. Furthermore, when normalized to the effective radius of the disc, the slope of the stellar population gradients does not correlate with the mass or with the morphological type of the galaxies. Contrary to this, the values of both age and metallicity at $sim$2.5 scale-lengths correlate with the central velocity dispersion in a similar manner to the central values of the bulges, although bulges show, on average, older ages and higher metallicities than the discs. One of the goals of the present paper is to test the theoretical prediction that non-linear coupling between the bar and the spiral arms is an efficient mechanism for producing radial migrations across significant distances within discs. The process of radial migration should flatten the stellar metallicity gradient with time and, therefore, we would expect flatter stellar metallicity gradients in barred galaxies. However, we do not find any difference in the metallicity or age gradients in galaxies with without bars. We discuss possible scenarios that can lead to this absence of difference.



قيم البحث

اقرأ أيضاً

We study the internal radial gradients of the stellar populations in a sample comprising 522 early-type galaxies (ETGs) from the SAMI (Sydney- AAO Multi-object Integral field spectrograph) Galaxy Survey. We stack the spectra of individual spaxels in radial bins, and derive basic stellar population properties: total metallicity ([Z/H]), [Mg/Fe], [C/Fe] and age. The radial gradient ($ abla$) and central value of the fits (evaluated at R$_e$/4) are compared against a set of six possible drivers of the trends. We find that velocity dispersion ($sigma$) - or, equivalently gravitational potential - is the dominant driver of the chemical composition gradients. Surface mass density is also correlated with the trends, especially with stellar age. The decrease of $ abla$[Mg/Fe] with increasing $sigma$ is contrasted by a rather shallow dependence of $ abla$[Z/H] with $sigma$ (although this radial gradient is overall rather steep). This result, along with a shallow age slope at the massive end, imposes stringent constraints on the progenitors of the populations that contribute to the formation of the outer envelopes of ETGs. The SAMI sample is split between a field sample and a cluster sample. Only weak environment-related differences are found, most notably a stronger dependence of central total metallicity ([Z/H]$_{e4}$) with $sigma$, along with a marginal trend of $ abla$[Z/H] to steepen in cluster galaxies, a result that is not followed by [Mg/Fe]. The results presented here serve as constraints on numerical models of the formation and evolution of ETGs.
We investigate barlenses in the Calar Alto Legacy Integral Field Area (CALIFA) survey galaxies, studying their morphologies, stellar populations and metallicities. Multi-component decompositions are made using the Sloan Digital Sky Survey (SDSS) imag es and making GALFIT models, fitting besides bulges, disks and bars, also barlenses, which are the face-on counterparts of Boxy/Peanut bulges. Similar GALFIT models as were made for the galaxies, were made also for the simulation snap-shots. For the stellar populations and metallicities in the various structure components CALIFA IFU-observations are used. We show that, when present, barlenses account for a significant portion of light of photometric bulges (i.e. the excess light on top of the disks), which highlights the importance of bars in accumulating the central galaxy mass concentrations in the cosmic timescale. Bars and barlenses are found to have similar cumulative stellar age and metallicity distributions. This is the first time that a combined morphological and stellar population analysis is used to study barlenses. We show that their stars are accumulated in a prolonged time period, concurrently with the evolution of the narrow bar.
Galaxy formation entails the hierarchical assembly of mass, along with the condensation of baryons and the ensuing, self-regulating star formation. The stars form a collisionless system whose orbit distribution retains dynamical memory that can const rain a galaxys formation history. The ordered-rotation dominated orbits with near maximum circularity $lambda_z simeq1$ and the random-motion dominated orbits with low circularity $lambda_z simeq0$ are called kinematically cold and kinematically hot, respectively. The fraction of stars on `cold orbits, compared to the fraction of stars on `hot orbits, speaks directly to the quiescence or violence of the galaxies formation histories. Here we present such orbit distributions, derived from stellar kinematic maps via orbit-based modelling for a well defined, large sample of 300 nearby galaxies. The sample, drawn from the CALIFA survey, includes the main morphological galaxy types and spans the total stellar mass range from $10^{8.7}$ to $10^{11.9}$ solar masses. Our analysis derives the orbit-circularity distribution as a function of galaxy mass, $p(lambda_z~|~M_star)$, and its volume-averaged total distribution, $p(lambda_z)$. We find that across most of the considered mass range and across morphological types, there are more stars on `warm orbits defined as $0.25le lambda_z le 0.8$ than on either `cold or `hot orbits. This orbit-based Hubble diagram provides a benchmark for galaxy formation simulations in a cosmological context.
This series of papers aims at understanding the formation and evolution of non-barred disc galaxies. We use the new spectro-photometric decomposition code, C2D, to separate the spectral information of bulges and discs of a statistically representativ e sample of galaxies from the CALIFA survey. Then, we study their stellar population properties analising the structure-independent datacubes with the Pipe3D algorithm. We find a correlation between the bulge-to-total ($B/T$) luminosity (and mass) ratio and galaxy stellar mass. The $B/T$ mass ratio has only a mild evolution with redshift, but the bulge-to-disc ($B/D$) mass ratio shows a clear increase of the disc component since redshift $z < 1$ for massive galaxies. The mass-size relation for both bulges and discs describes an upturn at high galaxy stellar masses (log{(M_{star}/M_{sun})} > 10.5). The relation holds for bulges but not for discs when using their individual stellar masses. We find a negligible evolution of the mass-size relation for both the most massive (log{(M_{star rm ,b,d}/M_{sun})} > 10) bulges and discs. For lower masses, discs show a larger variation than bulges. We also find a correlation between the Sersic index of bulges and both galaxy and bulge stellar mass, which does not hold for the disc mass. Our results support an inside-out formation of nearby non-barred galaxies, and they suggest that i) bulges formed early-on and ii) they have not evolved much through cosmic time. However, we find that the early properties of bulges drive the future evolution of the galaxy as a whole, and particularly the properties of the discs that eventually form around them.
365 - Daniel Goddard 2016
We study the internal radial gradients of stellar population properties within $1.5;R_{rm e}$ and analyse the impact of galaxy environment. We use a representative sample of 721 galaxies with masses ranging between $10^{9};M_{odot}$ to $10^{11.5};M_{ odot}$ from the SDSS-IV survey MaNGA. We split this sample by morphology into early-type and late-type galaxies. Using the full spectral fitting code FIREFLY, we derive the light and mass-weighted stellar population properties age and metallicity, and calculate the gradients of these properties. We use three independent methods to quantify galaxy environment, namely the $N^{th}$ nearest neighbour, the tidal strength parameter $Q$ and distinguish between central and satellite galaxies. In our analysis, we find that early-type galaxies generally exhibit shallow light-weighted age gradients in agreement with the literature and mass-weighted median age gradients tend to be slightly positive. Late-type galaxies, instead, have negative light-weighted age gradients. We detect negative metallicity gradients in both early and late-type galaxies that correlate with galaxy mass, with the gradients being steeper and the correlation with mass being stronger in late-types. We find, however, that stellar population gradients, for both morphological classifications, have no significant correlation with galaxy environment for all three characterisations of environment. Our results suggest that galaxy mass is the main driver of stellar population gradients in both early and late-type galaxies, and any environmental dependence, if present at all, must be very subtle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا