ﻻ يوجد ملخص باللغة العربية
We present a novel one-way quantum key distribution protocol based on 3-dimensional quantum state, a qutrit, that encodes two qubits in its 2-dimensional subspaces. The qubits hold the classical bit information that has to be shared between the legitimate users. Alice sends such a qutrit to Bob where he decodes one of the qubit and measures it along the random Pauli basis. This scheme has higher secure key rate at longer transmission distance than the standard BB84 protocol.
It is known that measurement-device-independent quantum key distribution (MDI-QKD) provides ultimate security from all types of side-channel attack against detectors at the expense of low key generation rate. Here, we propose MDI-QKD using 3-dimensio
Most Quantum Key Distribution protocols use a two-dimensional basis such as HV polarization as first proposed by Bennett and Brassard in 1984. These protocols are consequently limited to a key generation density of 1 bit per photon. We increase this
We present a silicon optical transmitter for polarization-encoded quantum key distribution (QKD). The chip was fabricated in a standard silicon photonic foundry process and integrated a pulse generator, intensity modulator, variable optical attenuato
We consider discrete-alphabet encoding schemes for coherent-state quantum key distribution. The sender encodes the letters of a finite-size alphabet into coherent states whose amplitudes are symmetrically distributed on a circle centered in the origi
In this paper we demonstrate an active polarization drift compensation scheme for optical fibres employed in a quantum key distribution experiment with polarization encoded qubits. The quantum signals are wavelength multiplexed in one fibre along wit