ﻻ يوجد ملخص باللغة العربية
Word embedding models such as GloVe rely on co-occurrence statistics from a large corpus to learn vector representations of word meaning. These vectors have proven to capture surprisingly fine-grained semantic and syntactic information. While we may similarly expect that co-occurrence statistics can be used to capture rich information about the relationships between different words, existing approaches for modeling such relationships have mostly relied on manipulating pre-trained word vectors. In this paper, we introduce a novel method which directly learns relation vectors from co-occurrence statistics. To this end, we first introduce a variant of GloVe, in which there is an explicit connection between word vectors and PMI weighted co-occurrence vectors. We then show how relation vectors can be naturally embedded into the resulting vector space.
Semantic relatedness of terms represents similarity of meaning by a numerical score. On the one hand, humans easily make judgments about semantic relatedness. On the other hand, this kind of information is useful in language processing systems. While
Semantic graphs, such as WordNet, are resources which curate natural language on two distinguishable layers. On the local level, individual relations between synsets (semantic building blocks) such as hypernymy and meronymy enhance our understanding
We study the problem of textual relation embedding with distant supervision. To combat the wrong labeling problem of distant supervision, we propose to embed textual relations with global statistics of relations, i.e., the co-occurrence statistics of
Distance based knowledge graph embedding methods show promising results on link prediction task, on which two topics have been widely studied: one is the ability to handle complex relations, such as N-to-1, 1-to-N and N-to-N, the other is to encode v
Tree-based Long short term memory (LSTM) network has become state-of-the-art for modeling the meaning of language texts as they can effectively exploit the grammatical syntax and thereby non-linear dependencies among words of the sentence. However, m