ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic fields of intermediate mass T Tauri stars

337   0   0.0 ( 0 )
 نشر من قبل Alexis Lavail
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims. In this paper, we aim to measure the strength of the surface magnetic fields for a sample of five intermediate mass T Tauri stars and one low mass T Tauri star from late-F to mid-K spectral types. While magnetic fields of T Tauri stars at the low mass range have been extensively characterized, our work complements previous studies towards the intermediate mass range; this complementary study is key to evaluate how magnetic fields evolve during the transition from a convective to a radiative core. Methods. We studied the Zeeman broadening of magnetically sensitive spectral lines in the H-band spectra obtained with the CRIRES high-resolution near-infrared spectrometer. These data are modelled using magnetic spectral synthesis and model atmospheres. Additional constraints on non-magnetic line broadening mechanisms are obtained from modelling molecular lines in the K band or atomic lines in the optical wavelength region. Results. We detect and measure mean surface magnetic fields for five of the six stars in our sample: CHXR 28, COUP 107, V2062 Oph, V1149 Sco, and Par 2441. Magnetic field strengths inferred from the most magnetically sensitive diagnostic line range from 0.8 to 1.8 kG. We also estimate a magnetic field strength of 1.9 kG for COUP 107 from an alternative diagnostic. The magnetic field on YLW 19 is the weakest in our sample and is marginally detected, with a strength of 0.8 kG. Conclusions. We populate an uncharted area of the pre-main-sequence HR diagram with mean magnetic field measurements from high-resolution near-infrared spectra. Our sample of intermediate mass T Tauri stars in general exhibits weaker magnetic fields than their lower mass counterparts. Our measurements will be used in combination with other spectropolarimetric studies of intermediate mass and lower mass T Tauri stars to provide input into pre-main-sequence stellar evolutionary models.

قيم البحث

اقرأ أيضاً

We aim to characterise the surface magnetic fields of a sample of 8 T Tauri stars from high-resolution near-IR spectroscopy. Some stars in our sample are known to be magnetic from previous spectroscopic or spectropolarimetric studies. Our goals are 1 ) to apply Zeeman broadening modelling to T Tauri stars with high-resolution data, 2) to expand the sample of stars with measured surface magnetic field strengths, 3) to investigate possible rotational or long-term magnetic variability by comparing spectral time series of given targets, and 4) to compare the magnetic field modulus <B> tracing small-scale magnetic fields to those of large-scale magnetic fields derived by Stokes V Zeeman Doppler Imaging. We modelled the Zeeman broadening of magnetically sensitive spectral lines in the near-IR K-band from high-resolution spectra by using magnetic spectrum synthesis based on realistic model atmospheres and by using different descriptions of the surface magnetic field. We developped a Bayesian framework that selects the complexity of the magnetic field prescription based on the information contained in the data. We obtain individual magnetic field measurements for each star in our sample using four different models. We find that the Bayesian Model 4 performs best in the range of magnetic fields measured on the sample (from 1.5 kG to 4.4 kG). We do not detect a strong rotational variation of <B> with a mean peak-to-peak variation of 0.3 kG. Our confidence intervals are of the same order of magnitude, which suggests that the Zeeman broadening is produced by a small-scale magnetic field homogeneously distributed over stellar surfaces. A comparison of our results with mean large-scale magnetic field measurements from Stokes V ZDI show different fractions of mean field strength being recovered, from 25-42% for relatively simple poloidal axisymmetric field topologies to 2-11% for more complex fields.
Context. Classical T Tauri stars (cTTs) are pre-main sequence stars surrounded by an accretion disk. They host a strong magnetic field, and both magnetospheric accretion and ejection processes develop as the young magnetic star interacts with its dis k. Studying this interaction is a major goal toward understanding the properties of young stars and their evolution. Aims. The goal of this study is to investigate the accretion process in the young stellar system HQ Tau, an intermediate-mass T Tauri star (1.9 M$_{odot}$). Methods. The time variability of the system is investigated both photometrically, using Kepler-K2 and complementary light curves, and from a high-resolution spectropolarimetric time series obtained with ESPaDOnS at CFHT. Results. The quasi-sinusoidal Kepler-K2 light curve exhibits a period of 2.424 d, which we ascribe to the rotational period of the star. The radial velocity of the system shows the same periodicity, as expected from the modulation of the photospheric line profiles by surface spots. A similar period is found in the red wing of several emission lines (e.g., HI, CaII, NaI), due to the appearance of inverse P Cygni components, indicative of accretion funnel flows. Signatures of outflows are also seen in the line profiles, some being periodic, others transient. The polarimetric analysis indicates a complex, moderately strong magnetic field which is possibly sufficient to truncate the inner disk close to the corotation radius, r$_{cor}$ $sim$3.5 R$_{star}$. Additionally, we report HQ Tau to be a spectroscopic binary candidate whose orbit remains to be determined. Conclusions. The results of this study expand upon those previously reported for low-mass T Tauri stars, as they indicate that the magnetospheric accretion process may still operate in intermediate-mass pre-main sequence stars, such as HQ Tau.
We report here the first results of a multi-wavelength campaign focussing on magnetospheric accretion processes within the close binary system V4046 Sgr, hosting two partly-convective classical T Tauri stars of masses ~0.9 Msun and age ~12 Myr. In th is paper, we present time-resolved spectropolarimetric observations collected in 2009 September with ESPaDOnS at the Canada-France-Hawaii Telescope (CFHT) and covering a full span of 7d or ~2.5 orbital/rotational cycles of V4046 Sgr. Small circularly polarised Zeeman signatures are detected in the photospheric absorption lines but not in the accretion-powered emission lines of V4046 Sgr, thereby demonstrating that both system components host large-scale magnetic fields weaker and more complex than those of younger, fully-convective cTTSs of only a few Myr and similar masses. Applying our tomographic imaging tools to the collected data set, we reconstruct maps of the large-scale magnetic field, photospheric brightness and accretion-powered emission at the surfaces of both stars of V4046 Sgr. We find that these fields include significant toroidal components, and that their poloidal components are mostly non-axisymmetric with a dipolar component of 50-100G strongly tilted with respect to the rotation axis; given the similarity with fields of partly-convective main-sequence stars of similar masses and rotation periods, we conclude that these fields are most likely generated by dynamo processes. We also find that both stars in the system show cool spots close to the pole and extended regions of low-contrast, accretion-powered emission; it suggests that mass accretion is likely distributed rather than confined in well defined high-contrast accretion spots, in agreement with the derived magnetic field complexity.
Context: Angular momentum (AM) transport models of stellar interiors require improvements to explain the strong extraction of AM from stellar cores that is observed with asteroseismology. One of the often invoked mediators of AM transport are interna l magnetic fields, even though their properties, observational signatures and influence on stellar evolution are largely unknown. Aims: We study how a fossil, axisymmetric internal magnetic field affects period spacing patterns of dipolar gravity mode oscillations in main-sequence stars with masses of 1.3, 2.0 and 3.0 M$_odot$. We assess the influence of fundamental stellar parameters on the magnitude of pulsation mode frequency shifts. Methods: We compute dipolar gravity mode frequency shifts due to a fossil, axisymmetric poloidal-toroidal internal magnetic field for a grid of stellar evolution models, varying stellar fundamental parameters. Rigid rotation is taken into account using the traditional approximation of rotation and the influence of the magnetic field is computed using a perturbative approach. Results: We find magnetic signatures for dipolar gravity mode oscillations in terminal-age main-sequence stars that are measurable for a near-core field strength larger than $10^{5}$ G. The predicted signatures differ appreciably from those due to rotation. Conclusions: Our formalism demonstrates the potential for the future detection and characterization of strong fossil, axisymmetric internal magnetic fields in gravity-mode pulsators near the end of core-hydrogen burning from Kepler photometry, if such fields exist.
For Classical T Tauri Stars (CTTSs), the resonance lines of N V, Si IV, and C IV, as well as the He II 1640 A line, act as diagnostics of the accretion process. Here we assemble a large high-resolution dataset of these lines in CTTSs and Weak T Tauri Stars (WTTSs). We present data for 35 stars: one Herbig Ae star, 28 CTTSs, and 6 WTTSs. We decompose the C IV and He II lines into broad and narrow Gaussian components (BC & NC). The most common (50 %) C IV line morphology in CTTSs is that of a low-velocity NC together with a redshifted BC. The velocity centroids of the BCs and NCs are such that V_BC > 4 * V_NC, consistent with the predictions of the accretion shock model, in at most 12 out of 22 CTTSs. We do not find evidence of the post-shock becoming buried in the stellar photosphere due to the pressure of the accretion flow. The He II CTTSs lines are generally symmetric and narrow, less redshifted than the CTTSs C IV lines, by ~10 km/sec. The flux in the BC of the He II line is small compared to that of the C IV line, consistent with models of the pre-shock column emission. The observations are consistent with the presence of multiple accretion columns with different densities or with accretion models that predict a slow-moving, low-density region in the periphery of the accretion column. For HN Tau A and RW Aur A, most of the C IV line is blueshifted suggesting that the C IV emission is produced by shocks within outflow jets. In our sample, the Herbig Ae star DX Cha is the only object for which we find a P-Cygni profile in the C IV line, which argues for the presence of a hot (10^5 K) wind. For the overall sample, the Si IV and N V line luminosities are correlated with the C IV line luminosities, although the relationship between Si IV and C IV shows large scatter about a linear relationship and suggests that TW Hya, V4046 Sgr, AA Tau, DF Tau, GM Aur, and V1190 Sco are silicon-poor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا