ترغب بنشر مسار تعليمي؟ اضغط هنا

Hot Gas Lines in T Tauri Stars

146   0   0.0 ( 0 )
 نشر من قبل David Ardila
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For Classical T Tauri Stars (CTTSs), the resonance lines of N V, Si IV, and C IV, as well as the He II 1640 A line, act as diagnostics of the accretion process. Here we assemble a large high-resolution dataset of these lines in CTTSs and Weak T Tauri Stars (WTTSs). We present data for 35 stars: one Herbig Ae star, 28 CTTSs, and 6 WTTSs. We decompose the C IV and He II lines into broad and narrow Gaussian components (BC & NC). The most common (50 %) C IV line morphology in CTTSs is that of a low-velocity NC together with a redshifted BC. The velocity centroids of the BCs and NCs are such that V_BC > 4 * V_NC, consistent with the predictions of the accretion shock model, in at most 12 out of 22 CTTSs. We do not find evidence of the post-shock becoming buried in the stellar photosphere due to the pressure of the accretion flow. The He II CTTSs lines are generally symmetric and narrow, less redshifted than the CTTSs C IV lines, by ~10 km/sec. The flux in the BC of the He II line is small compared to that of the C IV line, consistent with models of the pre-shock column emission. The observations are consistent with the presence of multiple accretion columns with different densities or with accretion models that predict a slow-moving, low-density region in the periphery of the accretion column. For HN Tau A and RW Aur A, most of the C IV line is blueshifted suggesting that the C IV emission is produced by shocks within outflow jets. In our sample, the Herbig Ae star DX Cha is the only object for which we find a P-Cygni profile in the C IV line, which argues for the presence of a hot (10^5 K) wind. For the overall sample, the Si IV and N V line luminosities are correlated with the C IV line luminosities, although the relationship between Si IV and C IV shows large scatter about a linear relationship and suggests that TW Hya, V4046 Sgr, AA Tau, DF Tau, GM Aur, and V1190 Sco are silicon-poor.



قيم البحث

اقرأ أيضاً

Residual gas in disks around young stars can spin down stars, circularize the orbits of terrestrial planets, and whisk away the dusty debris that is expected to serve as a signpost of terrestrial planet formation. We have carried out a sensitive sear ch for residual gas and dust in the terrestrial planet region surrounding young stars ranging in age from a few Myr to ~10 Myr in age. Using high resolution 4.7 micron spectra of transition objects and weak T Tauri stars, we searched for weak continuum excesses and CO fundamental emission, after making a careful correction for the stellar contribution to the observed spectrum. We find that the CO emission from transition objects is weaker and located further from the star than CO emission from non-transition T Tauri stars with similar stellar accretion rates. The difference is possibly the result of chemical and/or dynamical effects (i.e., a low CO abundance or close-in low-mass planets). The weak T Tauri stars show no CO fundamental emission down to low flux levels (5 x 10^(-20) - 10^{-18} W/m^2). We illustrate how our results can be used to constrain the residual disk gas content in these systems and discuss their potential implications for star and planet formation.
We present optical spectrophotometric monitoring of four active T Tauri stars (DG Tau, RY Tau, XZ Tau, RW Aur A) at high spectral resolution ($R ga 1 times 10^4$), to investigate the correlation between time variable mass ejection seen in the jet/win d structure of the driving source and time variable mass accretion probed by optical emission lines. This may allow us to constrain the understanding of the jet/wind launching mechanism, the location of the launching region, and the physical link with magnetospheric mass accretion. In 2010, observations were made at six different epochs to investigate how daily and monthly variability might affect such a study. We perform comparisons between the line profiles we observed and those in the literature over a period of decades and confirm the presence of time variability separate from the daily and monthly variability during our observations. This is so far consistent with the idea that these line profiles have a long term variability (3-20 years) related to episodic mass ejection suggested by the structures in the extended flow components. We also investigate the correlations between equivalent widths and between luminosities for different lines. We find that these correlations are consistent with the present paradigm of steady magnetospheric mass accretion and emission line regions that are close to the star.
Aims. In this paper, we aim to measure the strength of the surface magnetic fields for a sample of five intermediate mass T Tauri stars and one low mass T Tauri star from late-F to mid-K spectral types. While magnetic fields of T Tauri stars at the l ow mass range have been extensively characterized, our work complements previous studies towards the intermediate mass range; this complementary study is key to evaluate how magnetic fields evolve during the transition from a convective to a radiative core. Methods. We studied the Zeeman broadening of magnetically sensitive spectral lines in the H-band spectra obtained with the CRIRES high-resolution near-infrared spectrometer. These data are modelled using magnetic spectral synthesis and model atmospheres. Additional constraints on non-magnetic line broadening mechanisms are obtained from modelling molecular lines in the K band or atomic lines in the optical wavelength region. Results. We detect and measure mean surface magnetic fields for five of the six stars in our sample: CHXR 28, COUP 107, V2062 Oph, V1149 Sco, and Par 2441. Magnetic field strengths inferred from the most magnetically sensitive diagnostic line range from 0.8 to 1.8 kG. We also estimate a magnetic field strength of 1.9 kG for COUP 107 from an alternative diagnostic. The magnetic field on YLW 19 is the weakest in our sample and is marginally detected, with a strength of 0.8 kG. Conclusions. We populate an uncharted area of the pre-main-sequence HR diagram with mean magnetic field measurements from high-resolution near-infrared spectra. Our sample of intermediate mass T Tauri stars in general exhibits weaker magnetic fields than their lower mass counterparts. Our measurements will be used in combination with other spectropolarimetric studies of intermediate mass and lower mass T Tauri stars to provide input into pre-main-sequence stellar evolutionary models.
Classical T Tauri stars (CTTS) are young, late-type objects, that still accrete matter from a circumstellar disk. Analytical treatments and numerical simulations predict instabilities of the accretion shock on the stellar surface. We search for varia bility on timescales below a few minutes in the CTTS TW Hya and AA Tau. TW Hya was observed with SALTICAM on the Southern African Large Telescope (SALT) in narrow-band filters around the Balmer jump. The observations were performed in slit mode, which provides a time resolution of about 0.1 s. For AA Tau we obtained observations with OPTIMA, a single photon-counting device with even better time resolution. Small-scale variability typically lasts a few seconds, however, no significant periodicity is detected. We place a 99 % confidence upper limit on the pulsed fraction of the lightcurves. The relative amplitude is below 0.001 for TW Hya in the frequency range 0.02-3 Hz in the 340 nm filter and 0.1-3 Hz in the 380 nm filter. The corresponding value for AA Tau is an amplitude of 0.005 for 0.02-50 Hz. The relevant timescales indicate that shock instabilites should not be seen directly in our optical and UV observations, but the predicted oscialltions would induce observable variations in the reddening. We discuss how the magnetic field could stabilise the accretion shock.
We have detected circumstellar molecular gas around a small sample of T Tauri stars through aperture synthesis imaging of CO(2-1) emission at ~2-3 resolution. RY Tauri, DL Tauri, DO Tauri, and AS 209 show resolved and elongated gaseous emission. For RY Tau, the deconvolved, half-maximum radius along the direction of elongation, PA~48deg, is 110 AU. Corresponding radii and orientations for the other sources are: DL Tau -- 250 AU at PA~84deg; DO Tau -- 350 AU at PA~160deg; AS 209 -- 290 AU at PA~138deg. RY Tau, DL Tau, and AS 209 show velocity gradients parallel to the elongation, suggesting that the circumstellar material is rotating. RY Tau and AS 209 also exhibit double-peaked spectra characteristic of a rotating disk. Line emission from DO Tau is dominated by high-velocity blue-shifted gas which complicates the interpretation. Nevertheless, there is in each case sufficient evidence to speculate that the circumstellar emission may arise from a protoplanetary disk similar to that from which our solar system formed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا