ﻻ يوجد ملخص باللغة العربية
A discrete-time quantum walk (QW) is essentially a unitary operator driving the evolution of a single particle on the lattice. Some QWs have familiar physics PDEs as their continuum limit. Some slight generalization of them (allowing for prior encoding and larger neighbourhoods) even have the curved spacetime Dirac equation, as their continuum limit. In the $(1+1)-$dimensional massless case, this equation decouples as scalar transport equations with tunable speeds. We characterise and construct all those QWs that lead to scalar transport with tunable speeds. The local coin operator dictates that speed; we provide concrete techniques to tune the speed of propagation, by making use only of a finite number of coin operators---differently from previous models, in which the speed of propagation depends upon a continuous parameter of the quantum coin. The interest of such a discretization is twofold : to allow for easier experimental implementations on the one hand, and to evaluate ways of quantizing the metric field, on the other.
A boundary undergoing relativistic motion can create particles from quantum vacuum fluctuations in a phenomenon known as the dynamical Casimir effect. We examine the creation of particles, and more generally the transformation of quantum field states
Gravity induced neutrino-antineutrino oscillations are studied in the context of one and two flavor scenarios. This allows one to investigate the particle-antiparticle correlations in two and four level systems, respectively. Flavor entropy is used t
We introduce an exact mapping between the Dirac equation in (1+1)-dimensional curved spacetime (DCS) and a multiphoton quantum Rabi model (QRM). A background of a (1+1)-dimensional black hole requires a QRM with one- and two-photon terms that can be
We describe a new mechanism - radiatively-induced gravitational leptogenesis - for generating the matter-antimatter asymmetry of the Universe. We show how quantum loop effects in C and CP violating theories cause matter and antimatter to propagate di
We give an upper bound of the relative entanglement entropy of the ground state of a massive Dirac-Majorana field across two widely separated regions $A$ and $B$ in a static slice of an ultrastatic Lorentzian spacetime. Our bound decays exponentially