ترغب بنشر مسار تعليمي؟ اضغط هنا

Linking Signatures of Accretion with Magnetic Field Measurements - Line Profiles are not Significantly Different in Magnetic and Non-Magnetic Herbig Ae/Be Stars

53   0   0.0 ( 0 )
 نشر من قبل Megan Reiter
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Herbig Ae/Be stars are young, pre-main-sequence stars that sample the transition in structure and evolution between low- and high-mass stars, providing a key test of accretion processes in higher-mass stars. Few Herbig Ae/Be stars have detected magnetic fields, calling into question whether the magnetospheric accretion paradigm developed for low-mass stars can be scaled to higher masses. We present He I 10830 AA line profiles for 64 Herbig Ae/Be stars with a magnetic field measurement in order to test magnetospheric accretion in the physical regime where its efficacy remains uncertain. Of the 5 stars with a magnetic field detection, 1 shows redshifted absorption, indicative of infall, and 2 show blueshifted absorption, tracing mass outflow. The fraction of redshifted and blueshifted absorption profiles in the non-magnetic Herbig Ae/Be stars is remarkably similar, suggesting that the stellar magnetic field does not affect gas kinematics traced by He I 10830 AA. Line profile morphology does not correlate with the luminosity, rotation rate, mass accretion rate, or disk inclination. Only the detection of a magnetic field and a nearly face-on disk inclination show a correlation (albeit for few sources). This provides further evidence for weaker dipoles and more complex field topologies as stars develop a radiative envelope. The small number of magnetic Herbig Ae/Be stars has already called into question whether magnetospheric accretion can be scaled to higher masses; accretion signatures are not substantially different in magnetic Herbig Ae/Be stars, casting further doubt that they accrete in the same manner as classical T Tauri stars.

قيم البحث

اقرأ أيضاً

We report on the status of our spectropolarimetric studies of Herbig Ae/Be stars carried out during the last years. The magnetic field geometries of these stars, investigated with spectropolarimetric time series, can likely be described by centred di poles with polar magnetic field strengths of several hundred Gauss. A number of Herbig Ae/Be stars with detected magnetic fields have recently been observed with X-shooter in the visible and the near-IR, as well as with the high-resolution near-IR spectrograph CRIRES. These observations are of great importance to understand the relation between the magnetic field topology and the physics of the accretion flow and the accretion disk gas emission.
112 - E. Alecian 2008
Our recent discoveries of magnetic fields in a small number of Herbig Ae/Be (HAeBe) stars, the evolutionary progenitors of main sequence A/B stars, raise new questions about the origin of magnetic fields in the intermediate mass stars. The favoured f ossil field hypothesis suggests that a few percent of magnetic pre-main sequence A/B stars should exhibit similar magnetic strengths and topologies to the magnetic Ap/Bp stars. In this talk I will present the methods that we have used to characterise the magnetic fields of the Herbig Ae/Be stars, as well as our first conclusions on the origin of magnetism in intermediate-mass stars.
We present the results of a study of the temporal behaviour of several diagnostic lines formed in the region of the accretion-disk/star interaction in the three magnetic Herbig Ae stars HD101412, HD104237, and HD190073. More than 100 spectra acquired with the ISAAC, X-shooter, and CRIRES spectrographs installed at the VLT-8m telescope (ESO, Chile), as well as at other observatories (OHP, Crimean AO) were analyzed. The spectroscopic data were obtained in the He I lambda10830, Pa gamma and He I lambda5876 lines. We found that the temporal behaviour of the diagnostic lines in the spectra of all program stars can be widely explained by a rotational modulation of the line profiles generated by a local accretion flow. This result is in good agreement with the predictions of the magnetospheric accretion model. For the first time, the rotation period of HD104237 (P_rot = 5.37+-0.03 days), as well as the inclination angle (i = 21+-4deg) were determined. Additional analysis of the HARPSpol spectra of HD104237 and HD190073, taken from the ESO archive, with the use of the SVD method shows that the magnetic field structure of HD190073 is likely more complex than a simple dipole and contains a circumstellar component. For the first time, the magnetic field of the secondary component of the binary system HD104237 was also detected (<B_z> = 128+-10G).
This work aims to derive accretion rates for a sample of 38 HAeBe stars. We apply magnetospheric accretion (MA) shock modelling to reproduce the observed Balmer excesses. We look for possible correlations with the strength of the Halpha, [OI]6300, an d Brgamma emission lines. The median mass accretion rate is 2 x 10^-7 Msun yr^-1 in our sample. The model fails to reproduce the large Balmer excesses shown by the four hottest stars (T* > 12000 K). We derive Macc propto M*^5 and Lacc propto L*^1.2 for our sample, with scatter. Empirical calibrations relating the accretion and the Halpha, [OI]6300, and Brgamma luminosities are provided. The slopes in our expressions are slightly shallower than those for lower mass stars, but the difference is within the uncertainties, except for the [OI]6300 line. The Halpha 10% width is uncorrelated with Macc, unlike for the lower mass regime. The mean Halpha width shows higher values as the projected rotational velocities of HAe stars increase, which agrees with MA. The accretion rate variations in the sample are typically lower than 0.5 dex on timescales of days to months, Our data suggest that the changes in the Balmer excess are uncorrelated to the simultaneous changes of the line luminosities. The Balmer excesses and Halpha line widths of HAe stars can be interpreted within the context of MA, which is not the case for several HBes. The steep trend relating Macc and M* can be explained from the mass-age distribution characterizing HAeBe stars. The line luminosities used for low-mass objects are also valid to estimate typical accretion rates for the intermediate-mass regime under similar empirical expressions. However, we suggest that several of these calibrations are driven by the stellar luminosity.
90 - Jorick S. Vink 2015
Accretion is the prime mode of star formation, but the exact mode has not yet been identified in the Herbig Ae/Be mass range. We provide evidence that the the maximum variation in mass-accretion rate is reached on a rotational timescale, which sugges ts that rotational modulation is the key to understanding mass accretion. We show how spectropolarimetry is uniquely capable of resolving the innermost (within 0.1 AU) regions between the star and the disk, allowing us to map the 3D geometry of the accreting gas, and test theories of angular momentum evolution. We present Monte Carlo line-emission simulations showing how one would observe changes in the polarisation properties on rotational timescales, as accretion columns come and go into our line of sight.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا