ﻻ يوجد ملخص باللغة العربية
Our recent discoveries of magnetic fields in a small number of Herbig Ae/Be (HAeBe) stars, the evolutionary progenitors of main sequence A/B stars, raise new questions about the origin of magnetic fields in the intermediate mass stars. The favoured fossil field hypothesis suggests that a few percent of magnetic pre-main sequence A/B stars should exhibit similar magnetic strengths and topologies to the magnetic Ap/Bp stars. In this talk I will present the methods that we have used to characterise the magnetic fields of the Herbig Ae/Be stars, as well as our first conclusions on the origin of magnetism in intermediate-mass stars.
We report on the status of our spectropolarimetric studies of Herbig Ae/Be stars carried out during the last years. The magnetic field geometries of these stars, investigated with spectropolarimetric time series, can likely be described by centred di
H_alpha spectropolarimetry on Herbig Ae/Be stars shows that the innermost regions of intermediate mass (2 -- 15 M_sun) Pre-Main Sequence stars are flattened. This may be the best evidence to date that the higher mass Herbig Be stars are embedded in c
We have found Herbig Ae/Be star candidates in the western region of the Magellanic Bridge. Using the near infrared camera SIRIUS and the 1.4 m telescope IRSF, we surveyed about 3.0 deg x 1.3 deg (24 deg < RA < 36 deg, -75 deg < Dec. < -73.7 deg) in t
Accretion is the prime mode of star formation, but the exact mode has not yet been identified in the Herbig Ae/Be mass range. We provide evidence that the the maximum variation in mass-accretion rate is reached on a rotational timescale, which sugges
We present mid IR spectro-photometric imaging of a sample of eight nearby ($D leq 240$pc) Herbig Ae/Be stars. The spectra are dominated by photospheric emission (HR6000), featureless infrared excess emission (T~Cha), broad silicate emission feature (