ترغب بنشر مسار تعليمي؟ اضغط هنا

RAiSE III: 3C radio AGN energetics and composition

51   0   0.0 ( 0 )
 نشر من قبل Ross Turner
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Kinetic jet power estimates based exclusively on observed monochromatic radio luminosities are highly uncertain due to confounding variables and a lack of knowledge about some aspects of the physics of active galactic nuclei (AGNs). We propose a new methodology to calculate the jet powers of the largest, most powerful radio sources based on combinations of their size, lobe luminosity and shape of their radio spectrum; this approach avoids the uncertainties encountered by previous relationships. The outputs of our model are calibrated using hydrodynamical simulations and tested against independent X-ray inverse-Compton measurements. The jet powers and lobe magnetic field strengths of radio sources are found to be recovered using solely the lobe luminosity and spectral curvature, enabling the intrinsic properties of unresolved high-redshift sources to be inferred. By contrast, the radio source ages cannot be estimated without knowledge of the lobe volumes. The monochromatic lobe luminosity alone is incapable of accurately estimating the jet power or source age without knowledge of the lobe magnetic field strength and size respectively. We find that, on average, the lobes of the 3C radio sources have magnetic field strengths approximately a factor three lower than the equipartition value, inconsistent with equal energy in the particles and the fields at the 5$sigma$ level. The particle content of 3C radio lobes is discussed in the context of complementary observations; we do not find evidence favouring an energetically-dominant proton population.



قيم البحث

اقرأ أيضاً

The active galactic nuclei (AGN) lobe radio luminosities modelled in hydrodynamical simulations and most analytical models do not address the redistribution of the electron energies due to adiabatic expansion, synchrotron radiation and inverse-Compto n scattering of CMB photons. We present a synchrotron emissivity model for resolved sources which includes a full treatment of the loss mechanisms spatially across the lobe, and apply it to a dynamical radio source model with known pressure and volume expansion rates. The bulk flow and dispersion of discrete electron packets is represented by tracer fields in hydrodynamical simulations; we show that the mixing of different aged electrons strongly effects the spectrum at each point of the radio map in high-powered FR-II sources. The inclusion of this mixing leads to a factor of a few discrepancy between the spectral age measured using impulsive injection models (e.g. JP model) and the dynamical age. The observable properties of radio sources are predicted to be strongly frequency dependent: FR-II lobes are expected to appear more elongated at higher frequencies, while jetted FR-I sources appear less extended. The emerging FR0 class of radio sources, comprising gigahertz peaked and compact steep spectrum sources, can potentially be explained by a population of low-powered FR-Is. The extended emission from such sources is shown to be undetectable for objects within a few orders of magnitude of the survey detection limit and to not contribute to the curvature of the radio SED.
We model the X-ray surface brightness distribution of emission associated with Fanaroff & Riley type-II radio galaxies. Our approach builds on the RAiSE dynamical model which describes broadband radio-frequency synchrotron evolution of jet-inflated l obes in a wide range of environments. The X-ray version of the model presented here includes: (1) inverse-Compton upscattering of cosmic microwave background radiation; (2) the dynamics of the shocked gas shell and associated bremsstrahlung radiation; and (3) emission from the surrounding ambient medium. We construct X-ray surface brightness maps for a mock catalogue of extended FR-IIs based on the technical characteristics of the eRosita telescope. The integrated X-ray luminosity function at low redshifts ($zleqslant1$) is found to strongly correlate with the density of the ambient medium in all but the most energetic sources, whilst at high-redshift ($z>1$) the majority of objects are dominated by inverse-Compton lobe emission due to the stronger cosmic microwave background radiation. By inspecting our mock spatial brightness distributions, we conclude that any extended X-ray detection can be attributed to AGN activity at redshifts $zgeqslant1$. We compare the expected detection rates of active and remnant high-redshift radio AGNs for eRosita and LOFAR, and future more sensitive surveys. We find that a factor of ten more remnants can be detected using X-ray wavelengths over radio frequencies at $z>2.2$, increasing to a factor of 100 for redshifts $z>3.1$.
We detect bright [CII]158$mu$m line emission from the radio galaxy 3C 326N at z=0.09, which shows weak star formation ($SFR<0.07$M$_{odot}$~yr$^{-1}$) despite having strong H$_2$ line emission and $2times 10^9$M$_{odot}$ of molecular gas. The [CII] l ine is twice as strong as the 0-0S(1) 17$mu$m H$_2$ line, and both lines are much in excess what is expected from UV heating. We combine infrared Spitzer and Herschel data with gas and dust modeling to infer the gas physical conditions. The [CII] line traces 30 to 50% of the molecular gas mass, which is warm (70<T<100K) and at moderate densities $700<n_{H}<3000$cm$^{-3}$. The [CII] line is broad with a blue-shifted wing, and likely to be shaped by a combination of rotation, outflowing gas, and turbulence. It matches the near-infrared H$_2$ and the Na D optical absorption lines. If the wing is interpreted as an outflow, the mass loss rate would be larger than 20M$_{odot}$/yr, and the depletion timescale shorter than the orbital timescale ($10^8$yr). These outflow rates may be over-estimated because the stochastic injection of turbulence on galactic scales can contribute to the skewness of the line profile and mimic outflowing gas. We argue that the dissipation of turbulence is the main heating process of this gas. Cosmic rays can also contribute to the heating but they require an average gas density larger than the observational constraints. We show that strong turbulent support maintains a high gas vertical scale height (0.3-4kpc) in the disk and can inhibit the formation of gravitationally-bound structures at all scales, offering a natural explanation for the weakness of star formation in 3C 326N. To conclude, the bright [CII] line indicates that strong AGN jet-driven turbulence may play a key role in enhancing the amount of molecular gas (positive feedback) but yet can prevent star formation on galactic scales (negative feedback).
108 - F. Tombesi 2012
Using the results of a previous X-ray photo-ionization modelling of blue-shifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this letter we estimate the location and energetics of the associated ultra-f ast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval ~0.0003-0.03pc (~10^2-10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are constrained between ~0.01-1 M_{odot} yr^{-1}, corresponding to >5-10% of the accretion rates. The average lower-upper limits on the mechanical power are logdot{E}_K~42.6-44.6 erg s^{-1}. However, the minimum possible value of the ratio between the mechanical power and bolometric luminosity is constrained to be comparable or higher than the minimum required by simulations of feedback induced by winds/outflows. Therefore, this work demonstrates that UFOs are indeed capable to provide a significant contribution to the AGN cosmological feedback, in agreement with theoretical expectations and the recent observation of interactions between AGN outflows and the interstellar medium in several Seyferts galaxies.
Aims. We investigate the different manifestations of AGN feedback in the evolved, powerful radio source 3C293 and their impact on the molecular gas of its host galaxy, which harbors young star-forming regions and fast outflows of HI and ionized gas. Methods. We study the distribution and kinematics of the molecular gas of 3C293 using high spatial resolution observations of the CO(1-0) and CO(2-1) lines, and the 3 and 1mm continuum taken with the IRAM PdBI. We mapped the molecular gas of 3C293 and compared it with the dust and star-formation images of the host. We searched for signatures of outflow motions in the CO kinematics, and reexamined the evidence of outflowing gas in the HI spectra. We also derived the star formation rate (SFR) and efficiency (SFE) of the host with all available SFR tracers from the literature, and compared them with the SFE of young and evolved radio galaxies and normal star-forming galaxies. Results. The CO(1-0) emission line shows that the molecular gas in 3C293 is distributed along a massive (2.2E10 Msun) warped disk with diameter of 21 kpc that rotates around the AGN. Our data show that the dust and the star formation are clearly associated with the CO disk. The CO(2-1) emission is located in the inner 7 kpc (diameter) region around the AGN, coincident with the inner part of the CO(1-0) disk. Both the CO(1-0) and CO(2-1) spectra reveal the presence of an absorber against the central regions of 3C293 that is associated with the disk. We do not detect any fast (>500 km/s) outflow motions in the cold molecular gas. The host of 3C293 shows an SFE consistent with the Kennicutt-Schmidt law. The apparently low SFE of evolved radio galaxies may be caused by an underestimation of the SFR and/or an overestimation of the molecular gas densities in these sources. We find no signatures of AGN feedback in the molecular gas of 3C293.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا