ترغب بنشر مسار تعليمي؟ اضغط هنا

RAiSE X: searching for radio galaxies in X-ray surveys

61   0   0.0 ( 0 )
 نشر من قبل Ross Turner
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We model the X-ray surface brightness distribution of emission associated with Fanaroff & Riley type-II radio galaxies. Our approach builds on the RAiSE dynamical model which describes broadband radio-frequency synchrotron evolution of jet-inflated lobes in a wide range of environments. The X-ray version of the model presented here includes: (1) inverse-Compton upscattering of cosmic microwave background radiation; (2) the dynamics of the shocked gas shell and associated bremsstrahlung radiation; and (3) emission from the surrounding ambient medium. We construct X-ray surface brightness maps for a mock catalogue of extended FR-IIs based on the technical characteristics of the eRosita telescope. The integrated X-ray luminosity function at low redshifts ($zleqslant1$) is found to strongly correlate with the density of the ambient medium in all but the most energetic sources, whilst at high-redshift ($z>1$) the majority of objects are dominated by inverse-Compton lobe emission due to the stronger cosmic microwave background radiation. By inspecting our mock spatial brightness distributions, we conclude that any extended X-ray detection can be attributed to AGN activity at redshifts $zgeqslant1$. We compare the expected detection rates of active and remnant high-redshift radio AGNs for eRosita and LOFAR, and future more sensitive surveys. We find that a factor of ten more remnants can be detected using X-ray wavelengths over radio frequencies at $z>2.2$, increasing to a factor of 100 for redshifts $z>3.1$.



قيم البحث

اقرأ أيضاً

Recent works have discovered two fast ($approx 10$ ks) extragalactic X-ray transients in the Chandra Deep Field-South (CDF-S XT1 and XT2). These findings suggest that a large population of similar extragalactic transients might exist in archival X-ra y observations. We develop a method that can effectively detect such transients in a single Chandra exposure, and systematically apply it to Chandra surveys of CDF-S, CDF-N, DEEP2, UDS, COSMOS, and E-CDF-S, totaling 19~Ms of exposure. We find 13 transient candidates, including CDF-S XT1 and XT2. With the aid of available excellent multiwavelength observations, we identify the physical nature of all these candidates. Aside from CDF-S XT1 and XT2, the other 11 sources are all stellar objects, and all of them have $z$-band magnitudes brighter than 20. We estimate an event rate of $59^{+77}_{-38} rm{evt yr^{-1} deg^{-2}}$ for CDF-S XT-like transients with 0.5-7 keV peak fluxes $log F_{rm peak} gtrsim -12.6$ (erg cm$^{-2}$ s$^{-1}$). This event rate translates to $approx 15^{+20}_{-10}$ transients existing among Chandra archival observations at Galactic latitudes $|b|>20^{circ}$, which can be probed in future work. Future missions such as Athena and the Einstein Probe with large grasps (effective area $times$ field of view) are needed to discover a large sample ($sim$ thousands) of fast extragalactic X-ray transients.
225 - Nick Seymour 2005
Despite the plethora of deep (sub-mJy) radio surveys there remains considerable doubt as to the exact nature of the galaxies contributing to the source counts. Current evidence suggests that starformation in moderately luminous normal galaxies is res ponsible for the bulk of the emission below 1mJy. However given the sensitivities of these surveys we would expect a fraction of these sources to be distant radio galaxies. Using deep VLA and GMRT data we have found ~20 high-z candidate radio galaxies in two fields using the classical ultra-steep radio spectrum technique (De Breuck et al., 2000) and selecting galaxies with faint (i>25) optical counterparts. Several of these sources have X-ray detections in our deep XMM/Chandra observations and have fluxes high enough to put them in the quasar regime if they lie above redshift 3. Recently performed Spitzer GTO observations and upcoming near-infrared observations will help reveal the nature of these sources.
Nearby blue compact dwarf (BCD) galaxies are arguably our best local analogues of galaxies in the earlier Universe that may host relics of black hole (BH) seeds. Here we present high-resolution Chandra X-ray Observatory and Karl G. Jansky Very Large Array (VLA) observations of five nearby BCDs with stellar masses of less than the Small Magellanic Cloud ($M_star sim 10^{7} - 10^{8.4}$ $M_odot$). We search for signatures of accreting massive BHs at X-ray and radio wavelengths, which are more sensitive to lower BH accretion rates than optical searches. We detect a total of 10 hard X-ray sources and 10 compact radio sources at luminosities consistent with star-formation-related emission. We find one case of a spatially-coincident X-ray and radio source within the astrometric uncertainties. If the X-ray and radio emission are indeed coming from the same source, the origin of the radiation is plausibly from an active massive BH with log $(M_{rm BH}/M_{odot}) sim 4.8 pm 1.1$. However, given that the X-ray and radio emission are also coincident with a young star cluster complex, we consider the combination of an X-ray binary and a supernova remnant (or HII region) a viable alternative explanation. Overall, we do not find compelling evidence for active massive BHs in our target BCDs, which on average have stellar masses more than an order of magnitude lower than previous samples of dwarf galaxies found to host massive BHs. Our results suggest that moderately accreting massive BHs in BCDs are not so common as to permit unambiguous detection in a small sample.
We present Chandra and XMM-Newton X-ray, VLA radio, and optical observations of three candidate Compact Steep Spectrum (CSS) radio galaxies. CSS sources are galactic scale and are presumably driving a shock through the ISM of their host galaxy. B3 14 45+410 is a low excitation emission line CSS radio galaxy with possibly a hybrid Fanaroff-Riley FRI/II (or Fat Double) radio morphology. The Chandra observations reveal a point-like source which is well fit with a power law consistent with emission from a Doppler boosted core. 3C 268.3 is a CSS broad line radio galaxy whose Chandra data are consistent spatially with a point source centered on the nucleus and spectrally with a double power-law model. PKS B1017-325 is a low excitation emission line radio galaxy with a bent double radio morphology. While from our new spectroscopic redshift, PKS B1017-325 falls outside the formal definition of a CSS, the XMNM-Newton observations are consistent with ISM emission with either a contribution from hot shocked gas or non-thermal jet emission. We compile selected radio and X-ray properties of the nine bona fide CSS radio galaxies with X-ray detections so far. We find that 2/9 show X-ray spectroscopic evidence for hot shocked gas. We note that the counts in the sources are low and the properties of the 2 sources with evidence for hot shocked gas are typical of the other CSS radio galaxies. We suggest that hot shocked gas may be typical of CSS radio galaxies due to their propagation through their host galaxies.
Vast cavities in the intergalactic medium are excavated by radio galaxies. The cavities appear as such in X-ray images because the external medium has been swept up, leaving a hot but low density bubble surrounding the radio lobes. We explore here th e predicted thermal X-ray emission from a large set of high-resolution three dimensional simulations of radio galaxies driven by supersonic jets. We assume adiabatic non-relativistic hydrodynamics with injected straight and precessing jets of supersonic gas emitted from nozzles. Images of X-ray Bremsstrahlung emission tend to generate oval cavities in the soft keV bands and leading arcuate structures in hard X-rays. However, the cavity shape is sensitive to the jet-ambient density contrast, varying from concave-shaped at $eta = 0.1$ to convex for $eta = 0.0001$ where $eta$ is the jet/ambient density ratio. We find lateral ribs in the soft X-rays in certain cases and propose this as an explanation for those detected in the vicinity of Cygnus,A. In bi-lobed or X-shaped sources and in curved or deflected jets, the strongest X-ray emission is not associated with the hotspot but with the relic lobe or deflection location. This is because the hot high-pressure and dense high-compression regions do not coincide. Directed toward the observer, the cavity becomes a deep round hole surrounded by circular ripples. With short radio-mode outbursts with a duty cycle of 10% , the intracluster medium simmers with low Mach number shocks widely dissipating the jet energy in between active jet episodes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا