ﻻ يوجد ملخص باللغة العربية
We have developed a system combining a back-illuminated Complementary-Metal-Oxide-Semiconductor (CMOS) imaging sensor and Xilinx Zynq System-on-Chip (SoC) device for a soft X-ray (0.5-10 keV) imaging spectroscopy observation of the Sun to investigate the dynamics of the solar corona. Because typical timescales of energy release phenomena in the corona span a few minutes at most, we aim to obtain the corresponding energy spectra and derive the physical parameters, i.e., temperature and emission measure, every few tens of seconds or less for future solar X-ray observations. An X-ray photon-counting technique, with a frame rate of a few hundred frames per second or more, can achieve such results. We used the Zynq SoC device to achieve the requirements. Zynq contains an ARM processor core, which is also known as the Processing System (PS) part, and a Programmable Logic (PL) part in a single chip. We use the PL and PS to control the sensor and seamless recording of data to a storage system, respectively. We aim to use the system for the third flight of the Focusing Optics Solar X-ray Imager (FOXSI-3) sounding rocket experiment for the first photon-counting X-ray imaging and spectroscopy of the Sun.
X-ray calorimeters routinely achieve very high spectral resolution, typically a few eV full width at half maximum (FWHM). Measurements of calorimeter line shapes are usually dominated by the natural linewidth of most laboratory calibration sources. T
MAPS, MMT Adaptive optics exoPlanet characterization System, is the upgrade of legacy 6.5m MMT adaptive optics system. It is an NSF MSIP-funded project that includes (i) refurbishing of the MMT Adaptive Secondary Mirror (ASM), (ii) new high sensitive
We are developing large TES arrays in combination with FDM readout for the next generation of X-ray space observatories. For operation under AC-bias, the TESs have to be carefully designed and optimized. In particular, the use of high aspect ratio de
This paper describes the development of X-ray diffractive optics for imaging solar flares with better than 0.1 arcsec angular resolution. X-ray images with this resolution of the geq10 MK plasma in solar active regions and solar flares would allow th
An imaging technique with sensitivity to short duration optical transients is described. The technique is based on the use of wide-field cameras operating in a drift scanning mode, whereby persistent objects produce trails on the sensor and short dur