ترغب بنشر مسار تعليمي؟ اضغط هنا

Going Further with Point Pair Features

90   0   0.0 ( 0 )
 نشر من قبل Stefan Hinterstoisser
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Point Pair Features is a widely used method to detect 3D objects in point clouds, however they are prone to fail in presence of sensor noise and background clutter. We introduce novel sampling and voting schemes that significantly reduces the influence of clutter and sensor noise. Our experiments show that with our improvements, PPFs become competitive against state-of-the-art methods as it outperforms them on several objects from challenging benchmarks, at a low computational cost.



قيم البحث

اقرأ أيضاً

In this work we introduce Lean Point Networks (LPNs) to train deeper and more accurate point processing networks by relying on three novel point processing blocks that improve memory consumption, inference time, and accuracy: a convolution-type block for point sets that blends neighborhood information in a memory-efficient manner; a crosslink block that efficiently shares information across low- and high-resolution processing branches; and a multiresolution point cloud processing block for faster diffusion of information. By combining these blocks, we design wider and deeper point-based architectures. We report systematic accuracy and memory consumption improvements on multiple publicly available segmentation tasks by using our generic modules as drop-in replacements for the blocks of multiple architectures (PointNet++, DGCNN, SpiderNet, PointCNN).
Transformers have been recently adapted for large scale image classification, achieving high scores shaking up the long supremacy of convolutional neural networks. However the optimization of image transformers has been little studied so far. In this work, we build and optimize deeper transformer networks for image classification. In particular, we investigate the interplay of architecture and optimization of such dedicated transformers. We make two transformers architecture changes that significantly improve the accuracy of deep transformers. This leads us to produce models whose performance does not saturate early with more depth, for instance we obtain 86.5% top-1 accuracy on Imagenet when training with no external data, we thus attain the current SOTA with less FLOPs and parameters. Moreover, our best model establishes the new state of the art on Imagenet with Reassessed labels and Imagenet-V2 / match frequency, in the setting with no additional training data. We share our code and models.
In this paper, we aim at addressing two critical issues in the 3D detection task, including the exploitation of multiple sensors~(namely LiDAR point cloud and camera image), as well as the inconsistency between the localization and classification con fidence. To this end, we propose a novel fusion module to enhance the point features with semantic image features in a point-wise manner without any image annotations. Besides, a consistency enforcing loss is employed to explicitly encourage the consistency of both the localization and classification confidence. We design an end-to-end learnable framework named EPNet to integrate these two components. Extensive experiments on the KITTI and SUN-RGBD datasets demonstrate the superiority of EPNet over the state-of-the-art methods. Codes and models are available at: url{https://github.com/happinesslz/EPNet}.
54 - Tianhao Li , Limin Wang 2020
Current video representations heavily rely on learning from manually annotated video datasets which are time-consuming and expensive to acquire. We observe videos are naturally accompanied by abundant text information such as YouTube titles and Insta gram captions. In this paper, we leverage this visual-textual connection to learn spatiotemporal features in an efficient weakly-supervised manner. We present a general cross-modal pair discrimination (CPD) framework to capture this correlation between a video and its associated text. Specifically, we adopt noise-contrastive estimation to tackle the computational issue imposed by the huge amount of pair instance classes and design a practical curriculum learning strategy. We train our CPD models on both standard video dataset (Kinetics-210k) and uncurated web video dataset (Instagram-300k) to demonstrate its effectiveness. Without further fine-tuning, the learnt models obtain competitive results for action classification on Kinetics under the linear classification protocol. Moreover, our visual model provides an effective initialization to fine-tune on downstream tasks, which yields a remarkable performance gain for action recognition on UCF101 and HMDB51, compared with the existing state-of-the-art self-supervised training methods. In addition, our CPD model yields a new state of the art for zero-shot action recognition on UCF101 by directly utilizing the learnt visual-textual embeddings. The code will be made available at https://github.com/MCG-NJU/CPD-Video.
Since the generative neural networks have made a breakthrough in the image generation problem, lots of researches on their applications have been studied such as image restoration, style transfer and image completion. However, there has been few rese arch generating objects in uncontrolled real-world environments. In this paper, we propose a novel approach for vehicle image generation in real-world scenes. Using a subnetwork based on a precedent work of image completion, our model makes the shape of an object. Details of objects are trained by an additional colorization and refinement subnetwork, resulting in a better quality of generated objects. Unlike many other works, our method does not require any segmentation layout but still makes a plausible vehicle in the image. We evaluate our method by using images from Berkeley Deep Drive (BDD) and Cityscape datasets, which are widely used for object detection and image segmentation problems. The adequacy of the generated images by the proposed method has also been evaluated using a widely utilized object detection algorithm and the FID score.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا