ترغب بنشر مسار تعليمي؟ اضغط هنا

Suppressed Josephson phase transition in one parallel double-quantum-dot junction

81   0   0.0 ( 0 )
 نشر من قبل Wei-Jiang Gong
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With the help of the numerical renormalization group method, we theoretically investigate the Josephson phase transition in a parallel junction with one quantum dot embedded in each arm. It is found that in the cases of uniform dot levels and dot-superconductor couplings, the Josephson phase transition will be suppressed. This is manifested as the fact that with the enhancement of the electron correlation, the supercurrent only arrives at its $pi$ phase but cannot enter its $pi$ phase. Moreover, when the dot levels are detuned, one $pi$-phase island appears in the phase diagram. Such a result is attributed to the nonlocal motion of the Cooper pair in this structure. We believe that this work can be helpful in understanding the Josephson phase transition modified by the electron correlation and quantum interference.



قيم البحث

اقرأ أيضاً

We investigate the Josephson effect in one triple-terminal junction with embedded parallel-coupled double quantum dots. It is found that the inter-superconductor supercurrent has opportunities to oscillate in $4pi$ period, with the adjustment of the phase differences among the superconductors. What is notable is that such a result is robust and independent of fermion parities, intradot Coulomb strength, and the dot-superconductor coupling manner. By introducing the concept of spinful many-particle Majorana modes, we present the analytical definition of the Majorana operator via superposing electron and hole operators. It can be believed that this work provide a simple but feasible proposal for the realization of Majorana modes in a nonmagnetic system.
110 - S. Baba , S. Matsuo , H. Kamata 2017
We report fabrication and measurement of a device where closely-placed two parallel InAs nanowires (NWs) are contacted by source and drain normal metal electrodes. Established technique includes selective deposition of double nanowires onto a previou sly defined gate region. By tuning the junction with the finger bottom gates, we confirmed the formation of parallel double quantum dots, one in each NW, with a finite electrostatic coupling between each other. With the fabrication technique established in this study, devices proposed for more advanced experiments, such as Cooper-pair splitting and the observation of parafermions, can be realized.
We study the critical Josephson current flowing through a double quantum dot weakly coupled to two superconducting leads. We use analytical as well as numerical methods to investigate this setup in the limit of small and large bandwidth leads in all possible charging states, where we account for on-site interactions exactly. Our results provide clear signatures of nonlocal spin-entangled pairs, which support interpretations of recent experiments [Deacon, R. S. et al., Nat. Commun. 6, 7446 (2015)]. In addition, we find that the ground state with one electron on each quantum dot can undergo a tunable singlet-triplet phase transition in the regime where the superconducting gap in the leads is not too large, which gives rise to an additional new signature of nonlocal Cooper pair transport.
200 - J. Fransson , A. V. Balatsky , 2009
We investigate dynamical transport aspects of a combined nanomechanical-superconducting device in which Cooper pair tunneling interfere with the mechanical motion of a vibrating molecular quantum dot embedded in a Josephson junction. Six different re gimes for the tunneling dynamics are identified with respect to the electron level and the charging energy in the quantum dot. In five of those regimes new time-scales are introduced which are associated with the energies of the single electron transitions within the quantum dot, while there is one regime where the internal properties of the quantum dot are static.
We study the zero-temperature phase diagram of a dissipationless and disorder-free Josephson junction chain. Namely, we determine the critical Josephson energy below which the chain becomes insulating, as a function of the ratio of two capacitances: the capacitance of each Josephson junction and the capacitance between each superconducting island and the ground. We develop an imaginary-time path integral Quantum Monte-Carlo algorithm in the charge representation, which enables us to efficiently handle the electrostatic part of the chain Hamiltonian. We find that a large part of the phase diagram is determined by anharmonic corrections which are not captured by the standard Kosterlitz-Thouless renormalization group description of the transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا