ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical properties of a vibrating molecular quantum dot in a Josephson junction

200   0   0.0 ( 0 )
 نشر من قبل Jonas Fransson
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate dynamical transport aspects of a combined nanomechanical-superconducting device in which Cooper pair tunneling interfere with the mechanical motion of a vibrating molecular quantum dot embedded in a Josephson junction. Six different regimes for the tunneling dynamics are identified with respect to the electron level and the charging energy in the quantum dot. In five of those regimes new time-scales are introduced which are associated with the energies of the single electron transitions within the quantum dot, while there is one regime where the internal properties of the quantum dot are static.



قيم البحث

اقرأ أيضاً

We consider a combined nanomechanical-supercondcuting device that allows the Cooper pair tunneling to interfere with the mechanical motion of the middle superconducting island. Coupling of mechanical oscillations of a superconducting island between t wo superconducting leads to the electronic tunneling generate a supercurrent which is modulated by the oscillatory motion of the island. This coupling produces alternating finite and vanishing supercurrent as function of the superconducting phases. Current peaks are sensitive to the superconducting phase shifts relative to each other. The proposed device may be used to study the nanoelectromechanical coupling in case of superconducting electronics.
Phonon-assisted electronic tunnelings through a vibrating quantum dot embedded between normal and superconducting leads are studied in the Kondo regime. In such a hybrid device, with the bias applied to the normal lead, we find a series of Kondo side bands separated by half a phonon energy in the differential conductance, which are distinct from the phonon-assisted sidebands previously observed in the conventional Andreev tunnelings and in systems with only normal leads. These Kondo sidebands originate from the Kondo-Andreev cooperative cotunneling mediated by phonons, which exhibit a novel Kondo transport behavior due to the interplay of the Kondo effect, the Andreev tunnelings, and the mechanical vibrations. Our result could be observed in a recent experiment setup [J. Gramich emph{et al.}, PRL textbf{115}, 216801 (2015)], provided that their carbon nanotube device reaches the Kondo regime at low temperatures.
Correlation among particles in finite quantum systems leads to complex behaviour and novel states of matter. One remarkable example is predicted to occur in a semiconductor quantum dot (QD) where at vanishing density the Coulomb correlation among ele ctrons rigidly fixes their relative position as that of the nuclei in a molecule. In this limit, the neutral few-body excitations are roto-vibrations, which have either rigid-rotor or relative-motion character. In the weak-correlation regime, on the contrary, the Coriolis force mixes rotational and vibrational motions. Here we report evidence of roto-vibrational modes of an electron molecular state at densities for which electron localization is not yet fully achieved. We probe these collective modes by inelastic light scattering in QDs containing four electrons. Spectra of low-lying excitations associated to changes of the relative-motion wave function -the analogues of the vibration modes of a conventional molecule- do not depend on the rotational state represented by the total angular momentum. Theoretical simulations via the configuration-interaction (CI) method are in agreement with the observed roto-vibrational modes and indicate that such molecular excitations develop at the onset of short-range correlation.
We study the zero-temperature phase diagram of a dissipationless and disorder-free Josephson junction chain. Namely, we determine the critical Josephson energy below which the chain becomes insulating, as a function of the ratio of two capacitances: the capacitance of each Josephson junction and the capacitance between each superconducting island and the ground. We develop an imaginary-time path integral Quantum Monte-Carlo algorithm in the charge representation, which enables us to efficiently handle the electrostatic part of the chain Hamiltonian. We find that a large part of the phase diagram is determined by anharmonic corrections which are not captured by the standard Kosterlitz-Thouless renormalization group description of the transition.
In this article we review the state of the art on the transport properties of quantum dot systems connected to superconducting and normal electrodes. The review is mainly focused on the theoretical achievements although a summary of the most relevant experimental results is also given. A large part of the discussion is devoted to the single level Anderson type models generalized to include superconductivity in the leads, which already contains most of the interesting physical phenomena. Particular attention is paid to the competition between pairing and Kondo correlations, the emergence of pi-junction behavior, the interplay of Andreev and resonant tunneling, and the important role of Andreev bound states which characterized the spectral properties of most of these systems. We give technical details on the several different analytical and numerical methods which have been developed for describing these properties. We further discuss the recent theoretical efforts devoted to extend this analysis to more complex situations like multidot, multilevel or multiterminal configurations in which novel phenomena is expected to emerge. These include control of the localized spin states by a Josephson current and also the possibility of creating entangled electron pairs by means of non-local Andreev processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا