ﻻ يوجد ملخص باللغة العربية
The asymmetric quantum Rabi model with broken parity invariance shows spectral degeneracies in the integer case, that is when the asymmetry parameter equals an integer multiple of half the oscillator frequency, thus hinting at a hidden symmetry and accompanying integrability of the model. We study the expectation values of spin observables for each eigenstate and observe characteristic differences between the integer and noninteger cases for the asymptotics in the deep strong coupling regime, which can be understood from a perturbative expansion in the qubit splitting. We also construct a parent Hamiltonian whose exact eigenstates possess the same symmetries as the perturbative eigenstates of the asymmetric quantum Rabi model in the integer case.
The concept of the polaron in condensed matter physics has been extended to the Rabi model, where polarons resulting from the coupling between a two-level system and single-mode photons represent two oppositely displaced oscillators. Interestingly, t
Starting with the Gaudin-like Bethe ansatz equations associated with the quasi-exactly solved (QES) exceptional points of the asymmetric quantum Rabi model (AQRM) a spectral equivalence is established with QES hyperbolic Schrodinger potentials on the
We present a physically motivated variational wave function for the ground state of the asymmetric quantum Rabi model (AQRM). The wave function is a weighted superposition of squeezed coherent states entangled with non-orthogonal qubit states, and re
In this paper, we propose a general scheme to obtain the symmetry operators in the asymmetric quantum Rabi model within Bogoliubov operator approaches. The previous symmetry operators for small integer biases can be extremely easily reproduced in our
In this paper, we derive the symmetry operators ($J$s) in the asymmetric two-photon quantum Rabi models in terms of Bogoliubov operator approaches. $ J^2$ can be expressed as a polynomial in terms of the Hamiltonian, which uncovers the $mathbb{Z}_{2}