ترغب بنشر مسار تعليمي؟ اضغط هنا

The hidden symmetry of the asymmetric two-photon Rabi model

125   0   0.0 ( 0 )
 نشر من قبل Qing-Hu Chen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we derive the symmetry operators ($J$s) in the asymmetric two-photon quantum Rabi models in terms of Bogoliubov operator approaches. $ J^2$ can be expressed as a polynomial in terms of the Hamiltonian, which uncovers the $mathbb{Z}_{2}$ nature of the hidden symmetry in this two-photon model rigorously. The previous symmetry operators in the asymmetric one-photon quantum Rabi models are reproduced readily in terms of Bogoliubov operator approaches, and the obtained operators are expressed much more concisely. It is found that the polynomial degree of $J^2$ in the two-photon model is twice of that in the one-photon model.



قيم البحث

اقرأ أيضاً

140 - You-Fei Xie , Qing-Hu Chen 2021
In this paper, we uncover the elusive level crossings in a subspace of the asymmetric two-photon quantum Rabi model (tpQRM) when the bias parameter of qubit is an even multiple of the renormalized cavity frequency. Due to the absence of any explicit symmetry in the subspace, this double degeneracy implies the existence of the hidden symmetry. The non-degenerate exceptional points are also given completely. It is found that the number of the doubly degenerate crossing points in the asymmetric tpQRM is comparable to that in asymmetric one-photon QRM in terms of the same order of the constrained conditions. The bias parameter required for occurrence of level crossings in the asymmetric tpQRM is characteristically different from that at a multiple of the cavity frequency in the asymmetric one-photon QRM, suggesting the different hidden symmetries in the two asymmetric QRMs.
The hidden $mathbb{Z}_2$ symmetry of the asymmetric quantum Rabi model (AQRM) has recently been revealed via a systematic construction of the underlying symmetry operator. Based on the AQRM result, we propose an ansatz for the general form of the sym metry operators for AQRM-related models. Applying this ansatz we obtain the symmetry operator for three models: the anisotropic AQRM, the asymmetric Rabi-Stark model (ARSM) and the anisotropic ARSM.
The asymmetric quantum Rabi model (AQRM) has a broken $mathbb{Z}_2$ symmetry, with generally a non-degenerate eigenvalue spectrum. In some special cases where the asymmetric parameter is a multiple of the cavity frequency, stable level crossings typi cal of the $mathbb{Z}_2$-symmetric quantum Rabi model are recovered, however, without any obvious parity-like symmetry. This unknown symmetry has thus been referred to as hidden symmetry in the literature. Here we show that this hidden symmetry is not limited to the AQRM, but exists in various related light-matter interaction models with an asymmetric qubit bias term. Conditions under which the hidden symmetry exists in these models are determined and discussed. By investigating tunnelling dynamics in the displaced oscillator basis, a strong connection is found between the hidden symmetry and selective tunnelling.
103 - Lei Cong , Xi-Mei Sun , Maoxin Liu 2018
We employ a polaron picture to investigate the properties of the two-photon quantum Rabi model (QRM), which describes a two-level or spin-half system coupled with a single bosonic mode by a two-photon process. In the polaron picture, the coupling in the two-photon process leads to spin-related asymmetry so that the original single bosonic mode splits into two separated frequency modes for the opposite spins, which correspond to two textit{bare} polarons. Furthermore, the tunneling causes these two bare polarons to exchange their components with each other, thus leading to additional textit{induced} polarons. According to this picture, the variational ground-state wave function of the two-photon QRM can be correctly constructed, with the ground-state energy and other physical observables in good agreement with the exact numerics in all the coupling regimes. Furthermore, generalization to multiple induced polarons involving higher orders in the tunneling effect provides a systematic way to yield a rapid convergence in accuracy even around the difficult spectral collapse point. In addition, the polaron picture provides a distinctive understanding of the spectral collapse behavior, that is about the existence of discrete energy levels apart from the collapsed spectrum at the spectral collapse point. This work illustrates that the polaron picture is helpful to capture the key physics in this nonlinear light-matter interaction model and indicates that this method can be applicable to more complicated QRM-related models.
In this paper, we propose a general scheme to obtain the symmetry operators in the asymmetric quantum Rabi model within Bogoliubov operator approaches. The previous symmetry operators for small integer biases can be extremely easily reproduced in our scheme. Moreover, we can easily obtain the symmetry operators for arbitrary large biases hierarchically, which is perhaps hardly treated with the standard approach based on the expansions on the original Fock space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا