ترغب بنشر مسار تعليمي؟ اضغط هنا

Viscous Quark-Gluon Plasma Model Through Fluid QCD Approach

219   0   0.0 ( 0 )
 نشر من قبل L.T. Handoko
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A Lagrangian density for viscous quark-gluon plasma has been constructed within the fluid-like QCD framework. Gauge symmetry is preserved for all terms inside the Lagrangian, except for the viscous term. The transition mechanism from point particle field to fluid field, and vice versa, is discussed. The energy momentum tensor that is relevant for the gluonic plasma having the nature of fluid bulk of gluon sea is derived within the model. By imposing conservation law in the energy momentum tensor, shear viscosity appears as extractable from the equation.

قيم البحث

اقرأ أيضاً

Photons radiated in heavy-ion collisions are a penetrating probe, and as such can play an important role in the determination of the quark-gluon plasma (QGP) transport coefficients. In this work we calculate the bulk viscous correction to photon prod uction in two-to-two scattering reactions. Phase-space integrals describing the bulk viscous correction are evaluated explicitly in order to avoid the forward scattering approximation which is shown to be poor for photons at lower energies. We furthermore present hydrodynamical simulations of AA collisions focusing on the effect of this calculation on photonic observables. Bulk corrections are shown to reduce the elliptic flow of photons at higher $p_T$.
65 - T.P. Djun , L.T. Handoko 2011
The quark-gluon plasma in stellar structure is investigated using the fluid-like QCD approach. The classical energy momentum tensor relevant for high energy and hot plasma having the nature of fluid bulk of gluon sea is calculated within the model. T he transition of gluon field from point particle field inside stable hadrons to relativistic fluid field in hot plasma and vice versa is briefly discussed. The results are applied to construct the equation of state using the Tolman--Oppenheimer--Volkoff equation to describe the hot plasma dominated stellar structure.
246 - Berndt Muller 2021
Brief review of the hadronic probes that are used to diagnose the quark-gluon plasma produced in relativistic heavy ion collisions and interrogate its properties. Emphasis is placed on probes that have significantly impacted our understanding of the nature of the quark-gluon plasma and confirmed its formation.
A selfconsistent thermodynamic $T$-matrix approach is deployed to study the microscopic properties of the quark-gluon plasma (QGP), encompassing both light- and heavy-parton degrees of freedom in a unified framework. The starting point is a relativis tic effective Hamiltonian with a universal color force. The input in-medium potential is quantitatively constrained by computing the heavy-quark (HQ) free energy from the static $T$-matrix and fitting it to pertinent lattice-QCD (lQCD) data. The corresponding $T$-matrix is then applied to compute the equation of state (EoS) of the QGP in a two-particle irreducible formalism including the full off-shell properties of the selfconsistent single-parton spectral functions and their two-body interaction. In particular, the skeleton diagram functional is fully resummed to account for emerging bound and scattering states as the critical temperature is approached from above. We find that the solution satisfying three sets of lQCD data (EoS, HQ free energy and quarkonium correlator ratios) is not unique. As limiting cases we discuss a weakly-coupled solution (WCS) which features color-potentials close to the free energy, relatively sharp quasiparticle spectral functions and weak hadronic resonances near $T_{rm c}$, and a strongly-coupled solution (SCS) with a strong color potential (much larger than the free energy) resulting in broad non-quasiparticle parton spectral functions and strong hadronic resonance states which dominate the EoS when approaching $T_{rm c}$.
We study the evolution of the quark-gluon composition of the plasma created in ultra-Relativistic Heavy-Ion Collisions (uRHICs) employing a partonic transport theory that includes both elastic and inelastic collisions plus a mean fields dynamics asso ciated to the widely used quasi-particle model. The latter, able to describe lattice QCD thermodynamics, implies a chemical equilibrium ratio between quarks and gluons strongly increasing as $Trightarrow T_c$, the phase transition temperature. Accordingly we see in realistic simulations of uRHICs a rapid evolution from a gluon dominated initial state to a quark dominated plasma close to $T_c$. The quark to gluon ratio can be modified by about a factor of $sim 20$ in the bulk of the system and appears to be large also in the high $p_T$ region. We discuss how this aspect, often overflown, can be important for a quantitative study of several key issues in the QGP physics: shear viscosity, jet quenching, quarkonia suppression. Furthermore a bulk plasma made by more than $80%$ of quarks plus antiquarks provides a theoretical basis for hadronization via quark coalescence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا