ﻻ يوجد ملخص باللغة العربية
Advances in radio spectro-polarimetry offer the possibility to disentangle complex regions where relativistic and thermal plasmas mix in the interstellar and intergalactic media. Recent work has shown that apparently simple Faraday Rotation Measure (RM) spectra can be generated by complex sources. This is true even when the distribution of RMs in the complex source greatly exceeds the errors associated with a single component fit to the peak of the Faraday spectrum. We present a convolutional neural network (CNN) that can differentiate between simple Faraday thin spectra and those that contain multiple or Faraday thick sources. We demonstrate that this CNN, trained for the upcoming Polarisation Sky Survey of the Universes Magnetism (POSSUM) early science observations, can identify two component sources 99% of the time, provided that the sources are separated in Faraday depth by $>$10% of the FWHM of the Faraday Point Spread Function, the polarized flux ratio of the sources is $>$0.1, and that the Signal-to-Noise radio (S/N) of the primary component is $>$5. With this S/N cut-off, the false positive rate (simple sources mis-classified as complex) is $<$0.3%. Work is ongoing to include Faraday thick sources in the training and testing of the CNN.
We present a novel application of partial convolutional neural networks (PCNN) that can inpaint masked images of the cosmic microwave background. The network can reconstruct both the maps and the power spectra to a few percent for circular and irregu
In the preparation for ESAs Euclid mission and the large amount of data it will produce, we train deep convolutional neural networks on Euclid simulations classify solar system objects from other astronomical sources. Using transfer learning we are a
We use convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to estimate the parameters of strong gravitational lenses from interferometric observations. We explore multiple strategies and find that the best results are obtained w
Vetting of exoplanet candidates in transit surveys is a manual process, which suffers from a large number of false positives and a lack of consistency. Previous work has shown that Convolutional Neural Networks (CNN) provide an efficient solution to
We present a novel method of classifying Type Ia supernovae using convolutional neural networks, a neural network framework typically used for image recognition. Our model is trained on photometric information only, eliminating the need for accurate