ترغب بنشر مسار تعليمي؟ اضغط هنا

Heavy Higgs of the Twin Higgs Models

133   0   0.0 ( 0 )
 نشر من قبل Aqeel Ahmed
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف Aqeel Ahmed




اسأل ChatGPT حول البحث

Twin Higgs models are the prime illustration of neutral naturalness, where the new particles of the twin sector, gauge singlets of the Standard Model (SM), ameliorate the little hierarchy problem. In this work, we analyse phenomenological implications of the heavy Higgs of the Mirror Twin Higgs and Fraternal Twin Higgs models, when electroweak symmetry breaking is linearly realized. The most general structure of twin Higgs symmetry breaking, including explicit soft and hard breaking terms in the scalar potential, is employed. The direct and indirect searches at the LHC are used to probe the parameter space of Twin Higgs models through mixing of the heavy Higgs with the SM Higgs and decays of the heavy Higgs to the SM states. Moreover, for the Fraternal Twin Higgs, we study the production and decays of twin glueball and bottomonium states to the SM light fermions, which have interesting signatures involving displaced vertices and are potentially observable at the colliders.

قيم البحث

اقرأ أيضاً

The Twin Higgs model provides a natural theory for the electroweak symmetry breaking without the need of new particles carrying the standard model gauge charges below a few TeV. In the low energy theory, the only probe comes from the mixing of the Hi ggs fields in the standard model and twin sectors. However, an ultraviolet completion is required below ~ 10 TeV to remove residual logarithmic divergences. In non-supersymmetric completions, new exotic fermions charged under both the standard model and twin gauge symmetries have to be present to accompany the top quark, thus providing a high energy probe of the model. Some of them carry standard model color, and may therefore be copiously produced at current or future hadron colliders. Once produced, these exotic quarks can decay into a top together with twin sector particles. If the twin sector particles escape the detection, we have the irreducible stop-like signals. On the other hand, some twin sector particles may decay back into the standard model particles with long lifetimes, giving spectacular displaced vertex signals in combination with the prompt top quarks. This happens in the Fraternal Twin Higgs scenario with typical parameters, and sometimes is even necessary for cosmological reasons. We study the potential displaced vertex signals from the decays of the twin bottomonia, twin glueballs, and twin leptons in the Fraternal Twin Higgs scenario. Depending on the details of the twin sector, the exotic quarks may be probed up to ~ 2.5 TeV at the LHC and beyond 10 TeV at a future 100 TeV collider, providing a strong test of this class of ultraviolet completions.
We consider a strongly interacting twin Higgs (SITH) model where an ultraviolet completion of twin Higgs mechanism is realized by a strongly coupled approximately scale invariant theory. Besides the Standard Model (SM) and twin sectors, the low energ y effective theory contains a relatively light scalar called a dilaton --- the pseudo Goldstone boson of spontaneously broken scale invariance. The dilaton provides a unique portal between the SM and twin sectors whose phenomenology could provide an important probe of the twin Higgs mechanism. As a concrete example, we consider a holographic twin Higgs model where the role of the dilaton is played by the radion. The phenomenology of this model is fully determined by a few parameters and our analysis concludes that at the HL-LHC (14 TeV) and HE-LHC (27 TeV) with 3000/fb most of the natural parameter space can be probed.
We explore the possibility of discovering the mirror baryons and electrons of the Mirror Twin Higgs model in direct detection experiments, in a scenario in which these particles constitute a subcomponent of the observed DM. We consider a framework in which the mirror fermions are sub-nano-charged, as a consequence of kinetic mixing between the photon and its mirror counterpart. We consider both nuclear recoil and electron recoil experiments. The event rates depend on the fraction of mirror DM that is ionized, and also on its distribution in the galaxy. Since mirror DM is dissipative, at the location of the Earth it may be in the form of a halo or may have collapsed into a disk, depending on the cooling rate. For a given mirror DM abundance we determine the expected event rates in direct detection experiments for the limiting cases of an ionized halo, an ionized disk, an atomic halo and an atomic disk. We find that by taking advantage of the complementarity of the different experiments, it may be possible to establish not just the multi-component nature of mirror dark matter, but also its distribution in the galaxy. In addition, a study of the recoil energies may be able to determine the masses and charges of the constituents of the mirror sector. By showing that the mass and charge of mirror helium are integer multiples of those of mirror hydrogen, these experiments have the potential to distinguish the mirror nature of the theory. We also carefully consider mirror plasma screening effects, showing that the capture of mirror dark matter particles in the Earth has at most a modest effect on direct detection signals.
59 - Lisa Randall 2007
We study two Higgs models for large $tanbeta$ and relatively large second Higgs mass. In this limit the second heavy Higgs should have small vev and therefore couples only weakly to two gauge bosons. Furthermore, the couplings to down type quarks can be significantly modified (so long as the second Higgs is not overly heavy). Both these facts have significant implications for search strategies at the LHC and ILC. We show how an effective theory and explicit fundamental two Higgs model approach are related and consider the additional constraints in the presence of supersymmetry or $Z_2$ flavor symmetries. We argue that the best tests of the two Higgs doublet potential are likely to be measurements of the light Higgs branching fractions. We show how higher dimension operators that have recently been suggested to raise the light Higgs mass are probably best measured and distinguished in this way.
94 - Jiang-Hao Yu 2016
In twin Higgs model, the Higgs boson mass is protected by a $Z_2$ symmetry. The $Z_2$ symmetry needs to be broken either explicitly or spontaneously to obtain misalignment between electroweak and new physics vacua. We propose a novel $Z_2$ breaking m echanism, in which the $Z_2$ is spontaneously broken by radiative corrections to the Higgs potential. Two twin Higgses with different vacua are needed, and vacuum misalignment is realized by opposite but comparable contributions from gauge and Yukawa interactions to the potential. Due to fully radiative symmetry breaking, the Higgs sector is completely determined by twin Higgs vacuum, Yukawa and gauge couplings. There are eight pseudo-Goldstone bosons: the Higgs boson, inert doublet Higgs, and three twin scalars. We show the 125 GeV Higgs mass and constraints from Higgs coupling measurements could be satisfied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا