ترغب بنشر مسار تعليمي؟ اضغط هنا

Dispersion for Data-Driven Algorithm Design, Online Learning, and Private Optimization

78   0   0.0 ( 0 )
 نشر من قبل Ellen Vitercik
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Data-driven algorithm design, that is, choosing the best algorithm for a specific application, is a crucial problem in modern data science. Practitioners often optimize over a parameterized algorithm family, tuning parameters based on problems from their domain. These procedures have historically come with no guarantees, though a recent line of work studies algorithm selection from a theoretical perspective. We advance the foundations of this field in several directions: we analyze online algorithm selection, where problems arrive one-by-one and the goal is to minimize regret, and private algorithm selection, where the goal is to find good parameters over a set of problems without revealing sensitive information contained therein. We study important algorithm families, including SDP-rounding schemes for problems formulated as integer quadratic programs, and greedy techniques for canonical subset selection problems. In these cases, the algorithms performance is a volatile and piecewise Lipschitz function of its parameters, since tweaking the parameters can completely change the algorithms behavior. We give a sufficient and general condition, dispersion, defining a family of piecewise Lipschitz functions that can be optimized online and privately, which includes the functions measuring the performance of the algorithms we study. Intuitively, a set of piecewise Lipschitz functions is dispersed if no small region contains many of the functions discontinuities. We present general techniques for online and private optimization of the sum of dispersed piecewise Lipschitz functions. We improve over the best-known regret bounds for a variety of problems, prove regret bounds for problems not previously studied, and give matching lower bounds. We also give matching upper and lower bounds on the utility loss due to privacy. Moreover, we uncover dispersion in auction design and pricing problems.



قيم البحث

اقرأ أيضاً

102 - Kaiyi Ji 2021
Bilevel optimization has become a powerful framework in various machine learning applications including meta-learning, hyperparameter optimization, and network architecture search. There are generally two classes of bilevel optimization formulations for machine learning: 1) problem-based bilevel optimization, whose inner-level problem is formulated as finding a minimizer of a given loss function; and 2) algorithm-based bilevel optimization, whose inner-level solution is an output of a fixed algorithm. For the first class, two popular types of gradient-based algorithms have been proposed for hypergradient estimation via approximate implicit differentiation (AID) and iterative differentiation (ITD). Algorithms for the second class include the popular model-agnostic meta-learning (MAML) and almost no inner loop (ANIL). However, the convergence rate and fundamental limitations of bilevel optimization algorithms have not been well explored. This thesis provides a comprehensive convergence rate analysis for bilevel algorithms in the aforementioned two classes. We further propose principled algorithm designs for bilevel optimization with higher efficiency and scalability. For the problem-based formulation, we provide a convergence rate analysis for AID- and ITD-based bilevel algorithms. We then develop acceleration bilevel algorithms, for which we provide shaper convergence analysis with relaxed assumptions. We also provide the first lower bounds for bilevel optimization, and establish the optimality by providing matching upper bounds under certain conditions. We finally propose new stochastic bilevel optimization algorithms with lower complexity and higher efficiency in practice. For the algorithm-based formulation, we develop a theoretical convergence for general multi-step MAML and ANIL, and characterize the impact of parameter selections and loss geometries on the their complexities.
Data driven algorithm design is an important aspect of modern data science and algorithm design. Rather than using off the shelf algorithms that only have worst case performance guarantees, practitioners often optimize over large families of parametr ized algorithms and tune the parameters of these algorithms using a training set of problem instances from their domain to determine a configuration with high expected performance over future instances. However, most of this work comes with no performance guarantees. The challenge is that for many combinatorial problems of significant importance including partitioning, subset selection, and alignment problems, a small tweak to the parameters can cause a cascade of changes in the algorithms behavior, so the algorithms performance is a discontinuous function of its parameters. In this chapter, we survey recent work that helps put data-driven combinatorial algorithm design on firm foundations. We provide strong computational and statistical performance guarantees, both for the batch and online scenarios where a collection of typical problem instances from the given application are presented either all at once or in an online fashion, respectively.
Practical and pervasive needs for robustness and privacy in algorithms have inspired the design of online adversarial and differentially private learning algorithms. The primary quantity that characterizes learnability in these settings is the Little stone dimension of the class of hypotheses [Ben-David et al., 2009, Alon et al., 2019]. This characterization is often interpreted as an impossibility result because classes such as linear thresholds and neural networks have infinite Littlestone dimension. In this paper, we apply the framework of smoothed analysis [Spielman and Teng, 2004], in which adversarially chosen inputs are perturbed slightly by nature. We show that fundamentally stronger regret and error guarantees are possible with smoothed adversaries than with worst-case adversaries. In particular, we obtain regret and privacy error bounds that depend only on the VC dimension and the bracketing number of a hypothesis class, and on the magnitudes of the perturbations.
110 - Rad Niazadeh 2021
Motivated by online decision-making in time-varying combinatorial environments, we study the problem of transforming offline algorithms to their online counterparts. We focus on offline combinatorial problems that are amenable to a constant factor ap proximation using a greedy algorithm that is robust to local errors. For such problems, we provide a general framework that efficiently transforms offline robust greedy algorithms to online ones using Blackwell approachability. We show that the resulting online algorithms have $O(sqrt{T})$ (approximate) regret under the full information setting. We further introduce a bandit extension of Blackwell approachability that we call Bandit Blackwell approachability. We leverage this notion to transform greedy robust offline algorithms into a $O(T^{2/3})$ (approximate) regret in the bandit setting. Demonstrating the flexibility of our framework, we apply our offline-to-online transformation to several problems at the intersection of revenue management, market design, and online optimization, including product ranking optimization in online platforms, reserve price optimization in auctions, and submodular maximization. We show that our transformation, when applied to these applications, leads to new regret bounds or improves the current known bounds.
297 - Li Ye , Yishi Lin , Hong Xie 2020
A fundamental question for companies with large amount of logged data is: How to use such logged data together with incoming streaming data to make good decisions? Many companies currently make decisions via online A/B tests, but wrong decisions duri ng testing hurt users experiences and cause irreversible damage. A typical alternative is offline causal inference, which analyzes logged data alone to make decisions. However, these decisions are not adaptive to the new incoming data, and so a wrong decision will continuously hurt users experiences. To overcome the aforementioned limitations, we propose a framework to unify offline causal inference algorithms (e.g., weighting, matching) and online learning algorithms (e.g., UCB, LinUCB). We propose novel algorithms and derive bounds on the decision accuracy via the notion of regret. We derive the first upper regret bound for forest-based online bandit algorithms. Experiments on two real datasets show that our algorithms outperform other algorithms that use only logged data or online feedbacks, or algorithms that do not use the data properly.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا