ﻻ يوجد ملخص باللغة العربية
By assuming the existing of memory effects and long-range interactions in the hot and dense matter produced in high energy heavy ion collisions, the nonextensive statistics together with the relativistic hydrodynamics including phase transition is used to discuss the transverse momentum distributions of charged particles produced in heavy ion collisions. It is shown that the combined contributions from nonextensive statistics and hydrodynamics can give a good description to the experimental data in Au+Au collisions at sqrt(s_NN )= 200 GeV and in Pb+Pb collisions at sqrt(s_NN) )= 2.76 TeV for pi^(+ -) , K^(+ -) in the whole measured transverse momentum region, and for p(p-bar) in the region of p_T<= 2.0 GeV/c. This is different from our previous work, where, by using the conventional statistics plus hydrodynamics, the describable region is only limited in p_T<= 1.1 GeV/c.
It has long been debated whether the hydrodynamics is suitable for the smaller colliding systems such as p+p collisions. In this paper, by assuming the existence of longitudinal collective motion and long-range interactions in the hot and dense matte
The charged particles produced in heavy ion collisions consist of two parts: One is from the freeze-out of hot and dense matter formed in collisions. The other is from the leading particles. In this paper, the hot and dense matter is assumed to expan
Descriptions of heavy-ion collisions at Fermi energies require to take into account in-medium dissipation and phase-space fluctuations. The interplay of these correlations with the one-body collective behaviour determines the properties (kinematics a
We discuss the rapidity distribution of produced jets in heavy-ion collisions at LHC. The process allows one to determine to a good accuracy the value of the impact parameter of the nuclear collision in each single inelastic event. The knowledge of t
We analyze the transverse momentum distribution of $J/psi$ mesons produced in Au + Au collisions at the top RHIC energy within a blast-wave model that accounts for a possible inhomogeneity of the charmonium distribution and/or flow fluctuations. The