ﻻ يوجد ملخص باللغة العربية
For a smooth near identity map, we introduce the notion of an interpolating vector field written in terms of iterates of the map. Our construction is based on Lagrangian interpolation and provides an explicit expressions for autonomous vector fields which approximately interpolate the map. We study properties of the interpolating vector fields and explore their applications to the study of dynamics. In particular, we construct adiabatic invariants for symplectic near identity maps. We also introduce the notion of a Poincare section for a near identity map and use it to visualise dynamics of four dimensional maps. We illustrate our theory with several examples, including the Chirikov standard map and a symplectic map in dimension four, an example motivated by the theory of Arnold diffusion.
We use the notion of isomorphism between two invariant vector fields to shed new light on the issue of linearization of an invariant vector field near a relative equilibrium. We argue that the notion is useful in understanding the passage from the sp
In this work a theorical framework to apply the Poincare compactification technique to locally Lipschitz continuous vector fields is developed. It is proved that these vectors fields are compactifiable in the n-dimensional sphere, though the compacti
We define a graph network to be a coupled cell network where there are only one type of cell and one type of symmetric coupling between the cells. For a difference-coupled vector field on a graph network system, all the cells have the same internal d
Unless another thing is stated one works in the $C^infty$ category and manifolds have empty boundary. Let $X$ and $Y$ be vector fields on a manifold $M$. We say that $Y$ tracks $X$ if $[Y,X]=fX$ for some continuous function $fcolon Mrightarrowmathbb
We study the number and distribution of the limit cycles of a planar vector field whose component functions are random polynomials. We prove a lower bound on the average number of limit cycles when the random polynomials are sampled from the Kostlan-