ﻻ يوجد ملخص باللغة العربية
We define a graph network to be a coupled cell network where there are only one type of cell and one type of symmetric coupling between the cells. For a difference-coupled vector field on a graph network system, all the cells have the same internal dynamics, and the coupling between cells is identical, symmetric, and depends only on the difference of the states of the interacting cells. We define four nested sets of difference-coupled vector fields by adding further restrictions on the internal dynamics and the coupling functions. These restrictions require that these functions preserve zero or are odd or linear. We characterize the synchrony and anti-synchrony subspaces with respect to these four subsets of admissible vector fields. Synchrony and anti-synchrony subspaces are determined by partitions and matched partitions of the cells that satisfy certain balance conditions. We compute the lattice of synchrony and anti-synchrony subspaces for several graph networks. We also apply our theory to systems of coupled van der Pol oscillators.
For a regular coupled cell network, synchrony subspaces are the polydiagonal subspaces that are invariant under the network adjacency matrix. The complete lattice of synchrony subspaces of an $n$-cell regular network can be seen as an intersection of
Spike time response curves (STRCs) are used to study the influence of synaptic stimuli on the firing times of a neuron oscillator without the assumption of weak coupling. They allow us to approximate the dynamics of synchronous state in networks of n
An imperative condition for the functioning of a power-grid network is that its power generators remain synchronized. Disturbances can prompt desynchronization, which is a process that has been involved in large power outages. Here we derive a condit
Living creatures exhibit a remarkable diversity of locomotion mechanisms, evolving structures specialised for interacting with their environment. In the vast majority of cases, locomotor behaviours such as flying, crawling, and running, are orchestra
Recordings from area V4 of monkeys have revealed that when the focus of attention is on a visual stimulus within the receptive field of a cortical neuron, two distinct changes can occur: The firing rate of the neuron can change and there can be an in