ترغب بنشر مسار تعليمي؟ اضغط هنا

The role of frequency dependence in dynamical gap generation in graphene

48   0   0.0 ( 0 )
 نشر من قبل M. E. Carrington
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the frequency dependencies of the fermion and photon dressing functions in dynamical gap generation in graphene. We use a low energy effective QED-like description, but within this approximation, we include all frequency dependent effects including retardation. We obtain the critical coupling by calculating the gap using a non-perturbative Dyson-Schwinger approach. Compared to the results of our previous calculation [1] which used a Lindhard screening approximation instead of including a self-consistently calculated dynamical screening function, the critical coupling is substantially reduced.



قيم البحث

اقرأ أيضاً

We study the frequency dependencies in the renormalization of the fermion Greens function for the $pi$-band electrons in graphene and their influence on the dynamical gap generation at sufficiently strong interaction. Adopting the effective QED-like description for the low-energy excitations within the Dirac-cone region we self consistently solve the fermion Dyson-Schwinger equation in various approximations for the photon propagator and the vertex function with special emphasis on frequency dependent Lindhard screening and retardation effects.
42 - M.E. Carrington 2019
We study the effect of a Chern-Simons term on dynamical gap generation in a low energy effective theory that describes some features of mono-layer suspended graphene. We use a non-perturbative Schwinger-Dyson approach. We solve a set of coupled integ ral equations for eight independent dressing functions that describe fermion and photon degrees of freedom. We find a strong suppression of the gap, and corresponding increase in the critical coupling, as a function of increasing Chern-Simons coefficient.
We have measured a strong increase of the low-temperature resistivity $rho_{xx}$ and a zero-value plateau in the Hall conductivity $sigma_{xy}$ at the charge neutrality point in graphene subjected to high magnetic fields up to 30 T. We explain our re sults by a simple model involving a field dependent splitting of the lowest Landau level of the order of a few Kelvin, as extracted from activated transport measurements. The model reproduces both the increase in $rho_{xx}$ and the anomalous $ u=0$ plateau in $sigma_{xy}$ in terms of coexisting electrons and holes in the same spin-split zero-energy Landau level.
The density of electron-hole pairs produced in a graphene sample immersed in a homogeneous time-dependent electrical field is evaluated. Because low energy charge carriers in graphene are described by relativistic quantum mechanics, the calculation i s performed within the strong field quantum electrodynamics formalism, requiring a solution of the Dirac equation in momentum space. The latter is solved using a split-operator numerical scheme on parallel computers, allowing for the investigation of several field configurations. The strength of the method is illustrated by computing the electron momentum density generated from a realistic laser pulse model. We observe quantum interference patterns reminiscent of Landau-Zener-St{u}ckelberg interferometry.
Theory of the electron spin relaxation in graphene on the SiO$_2$ substrate is developed. Charged impurities and polar optical surface phonons in the substrate induce an effective random Bychkov-Rashba-like spin-orbit coupling field which leads to sp in relaxation by the Dyakonov-Perel mechanism. Analytical estimates and Monte Carlo simulations show that the corresponding spin relaxation times are between micro- to milliseconds, being only weakly temperature dependent. It is also argued that the presence of adatoms on graphene can lead to spin lifetimes shorter than nanoseconds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا