ﻻ يوجد ملخص باللغة العربية
We demonstrate theoretically that a strong high-frequency circularly polarized electromagnetic field can turn a two-dimensional periodic array of interconnected quantum rings into a topological insulator. The elaborated approach is applicable to calculate and analyze the electron energy spectrum of the array, the energy spectrum of the edge states and the corresponding electronic densities. As a result, the present theory paves the way to optical control of the topological phases in ring-based mesoscopic structures.
We report on a strongly coupled bilayer graphene (BLG) - bise device with a junction resistance of less than 1.5 k$Omegamu$m$^2$. This device exhibits unique behavior at the interface, which cannot be attributed to either material in absence of the o
Considering the quantum dynamics of 2DEG exposed to both a stationary magnetic field and an intense high-frequency electromagnetic wave, we found that the wave decreases the scattering-induced broadening of Landau levels. Therefore, various magnetoel
The emergence of topological order in graphene is in great demand for the realization of quantum spin Hall states. Recently, it is theoretically proposed that the spin textures of surface states in topological insulator can be directly transferred to
We consider the coupling of a single mode microwave resonator to a tunnel junction whose contacts are at thermal equilibrium. We derive the quantum master equation describing the evolution of the resonator field in the strong coupling regime, where t
Topological states of matter in equilibrium, as well as out of equilibrium, have been thoroughly investigated during the last years in condensed-matter and cold-atom systems. However, the geometric topology of the studied samples is usually trivial,