ﻻ يوجد ملخص باللغة العربية
We report on a strongly coupled bilayer graphene (BLG) - bise device with a junction resistance of less than 1.5 k$Omegamu$m$^2$. This device exhibits unique behavior at the interface, which cannot be attributed to either material in absence of the other. We observe quantum oscillations in the magnetoresistance of the junction, indicating the presence of well-resolved Landau levels due to hole carriers of unknown origin with a very large Fermi surface. These carriers, found only at the interface, could conceivably arise due to significant hole doping of the bilayer graphene with charge transfer on the order of 2$times$10$^{13}$ cm$^{-2}$, or due to twist angle dependent mini-band transport.
Topological insulators (TIs) hold great promises for new spin-related phenomena and applications thanks to the spin texture of their surface states. However, a versatile platform allowing for the exploitation of these assets is still lacking due to t
An interface electron state at the junction between a three-dimensional topological insulator (TI) film of Bi2Se3 and a ferrimagnetic insulator film of Y3Fe5O12 (YIG) was investigated by measurements of angle-resolved photoelectron spectroscopy and X
The emergence of topological order in graphene is in great demand for the realization of quantum spin Hall states. Recently, it is theoretically proposed that the spin textures of surface states in topological insulator can be directly transferred to
We compute the spin-active scattering matrix and the local spectrum at the interface between a metal and a three-dimensional topological band insulator. We show that there exists a critical incident angle at which complete (100%) spin flip reflection
Magnetic exchange driven proximity effect at a magnetic insulator / topological insulator (MI/TI) interface provides a rich playground for novel phenomena as well as a way to realize low energy dissipation quantum devices. Here we report a dramatic e