ﻻ يوجد ملخص باللغة العربية
Smarticles, or smart active particles, are small robots equipped with only basic movement and sensing abilities that are incapable of rotating or displacing individually. We study the ensemble behavior of smarticles, i.e., the behavior a collective of these very simple computational elements can achieve, and how such behavior can be implemented using minimal programming. We show that an ensemble of smarticles constrained to remain close to one another (which we call a supersmarticle), achieves directed locomotion toward or away from a light source, a phenomenon known as phototaxing. We present experimental and theoretical models of phototactic supersmarticles that collectively move with a directed displacement in response to light. The motion of the supersmarticle is approximately Brownian, and is a result of chaotic interactions among smarticles. The system can be directed by introducing asymmetries among the individual smarticles behavior, in our case by varying activity levels in response to light, resulting in supersmarticle biased motion.
The presence of a delay between sensing and reacting to a signal can determine the long-term behavior of autonomous agents whose motion is intrinsically noisy. In a previous work [M. Mijalkov, A. McDaniel, J. Wehr, and G. Volpe, Phys. Rev. X 6, 01100
The power available to microscopic robots (nanorobots) that oxidize bloodstream glucose while aggregated in circumferential rings on capillary walls is evaluated with a numerical model using axial symmetry and time-averaged release of oxygen from pas
asteroids or comets have received remarkable attention in the world. In small body explorations, especially, detailed in-situ surface exploration by tiny rover is one of effective and fruitful means and is expected to make strong contributions toward
In this paper, our focus is on certain applications for mobile robotic networks, where reconfiguration is driven by factors intrinsic to the network rather than changes in the external environment. In particular, we study a version of the coverage pr
A prototype of modular networked robot for autonomous monitoring works with full control over web through wireless connection has been developed. The robot is equipped with a particular set of built-in analyzing tools and appropriate censors, dependi