ترغب بنشر مسار تعليمي؟ اضغط هنا

Intelligent Unmanned Explorer for Deep Space Exploration

188   0   0.0 ( 0 )
 نشر من قبل Icius Committee
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

asteroids or comets have received remarkable attention in the world. In small body explorations, especially, detailed in-situ surface exploration by tiny rover is one of effective and fruitful means and is expected to make strong contributions towards scientific studies. JAXA ISAS is promoting MUSES C mission, which is the worlds first sample and return attempt to or from the near earth asteroid. Hayabusa spacecraft in MUSES C mission took the tiny rover, which was expected to perform the in-situ surface exploration by hopping. This paper describes the system design, mobility and intelligence of the developed unmanned explorer. This paper also presents the ground experimental results and the flight results.



قيم البحث

اقرأ أيضاً

Building domain-specific accelerators for autonomous unmanned aerial vehicles (UAVs) is challenging due to a lack of systematic methodology for designing onboard compute. Balancing a computing system for a UAV requires considering both the cyber (e.g ., sensor rate, compute performance) and physical (e.g., payload weight) characteristics that affect overall performance. Iterating over the many component choices results in a combinatorial explosion of the number of possible combinations: from 10s of thousands to billions, depending on implementation details. Manually selecting combinations of these components is tedious and expensive. To navigate the {cyber-physical design space} efficiently, we introduce emph{AutoPilot}, a framework that automates full-system UAV co-design. AutoPilot uses Bayesian optimization to navigate a large design space and automatically select a combination of autonomy algorithm and hardware accelerator while considering the cross-product effect of other cyber and physical UAV components. We show that the AutoPilot methodology consistently outperforms general-purpose hardware selections like Xavier NX and Jetson TX2, as well as dedicated hardware accelerators built for autonomous UAVs, across a range of representative scenarios (three different UAV types and three deployment environments). Designs generated by AutoPilot increase the number of missions on average by up to 2.25x, 1.62x, and 1.43x for nano, micro, and mini-UAVs respectively over baselines. Our work demonstrates the need for holistic full-UAV co-design to achieve maximum overall UAV performance and the need for automated flows to simplify the design process for autonomous cyber-physical systems.
SLAM has matured significantly over the past few years, and is beginning to appear in serious commercial products. While new SLAM systems are being proposed at every conference, evaluation is often restricted to qualitative visualizations or accuracy estimation against a ground truth. This is due to the lack of benchmarking methodologies which can holistically and quantitatively evaluate these systems. Further investigation at the level of individual kernels and parameter spaces of SLAM pipelines is non-existent, which is absolutely essential for systems research and integration. We extend the recently introduced SLAMBench framework to allow comparing two state-of-the-art SLAM pipelines, namely KinectFusion and LSD-SLAM, along the metrics of accuracy, energy consumption, and processing frame rate on two different hardware platforms, namely a desktop and an embedded device. We also analyze the pipelines at the level of individual kernels and explore their algorithmic and hardware design spaces for the first time, yielding valuable insights.
We consider an autonomous exploration problem in which a range-sensing mobile robot is tasked with accurately mapping the landmarks in an a priori unknown environment efficiently in real-time; it must choose sensing actions that both curb localizatio n uncertainty and achieve information gain. For this problem, belief space planning methods that forward-simulate robot sensing and estimation may often fail in real-time implementation, scaling poorly with increasing size of the state, belief and action spaces. We propose a novel approach that uses graph neural networks (GNNs) in conjunction with deep reinforcement learning (DRL), enabling decision-making over graphs containing exploration information to predict a robots optimal sensing action in belief space. The policy, which is trained in different random environments without human intervention, offers a real-time, scalable decision-making process whose high-performance exploratory sensing actions yield accurate maps and high rates of information gain.
For heterogeneous unmanned systems composed of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs), using UAVs serve as eyes to assist UGVs in motion planning is a promising research direction due to the UAVs vast view scope. However, due to UAVs flight altitude limitations, it may be impossible to observe the global map, and motion planning in the local map is a POMDP (Partially Observable Markov Decision Process) problem. This paper proposes a motion planning algorithm for heterogeneous unmanned system under partial observation from UAV without reconstruction of global maps, which consists of two parts designed for perception and decision-making, respectively. For the perception part, we propose the Grid Map Generation Network (GMGN), which is used to perceive scenes from UAVs perspective and classify the pathways and obstacles. For the decision-making part, we propose the Motion Command Generation Network (MCGN). Due to the addition of memory mechanism, MCGN has planning and reasoning abilities under partial observation from UAVs. We evaluate our proposed algorithm by comparing with baseline algorithms. The results show that our method effectively plans the motion of heterogeneous unmanned systems and achieves a relatively high success rate.
Surgical robots have had clinical use since the mid 1990s. Robot-assisted surgeries offer many benefits over the conventional approach including lower risk of infection and blood loss, shorter recovery, and an overall safer procedure for patients. Th e past few decades have shown many emerging surgical robotic platforms that can work in complex and confined channels of the internal human organs and improve the cognitive and physical skills of the surgeons during the operation. Advanced technologies for sensing, actuation, and intelligent control have enabled multiple surgical devices to simultaneously operate within the human body at low cost and with more efficiency. Despite advances, current surgical intervention systems are not able to execute autonomous tasks and make cognitive decisions that are analogous to that of humans. This paper will overview a historical development of surgery from conventional open to robotic-assisted approaches with discussion on the capabilities of advanced intelligent systems and devices that are currently implemented in existing surgical robotic systems. It will also revisit available autonomous surgical platforms with comments on the essential technologies, existing challenges, and suggestions for the future development of intelligent robotic-assisted surgical systems towards the achievement of fully autonomous operation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا