ﻻ يوجد ملخص باللغة العربية
In this note we study automata recognizing birecurrent sets. A set of words is birecurrent if the minimal partial DFA recognizing this set and the minimal partial DFA recognizing the reversal of this set are both strongly connected. This notion was introduced by Perrin, and Dolce et al. provided a characterization of such sets. We prove that deciding whether a partial DFA recognizes a birecurrent set is a PSPACE-complete problem. We show that this problem is PSPACE-complete even in the case of binary partial DFAs with all states accepting and in the case of binary complete DFAs. We also consider a related problem of computing the rank of a partial DFA.
A set is called recurrent if its minimal automaton is strongly connected and birecurrent if it is recurrent as well as its reversal. We prove a series of results concerning birecurrent sets. It is already known that any birecurrent set is completely
We present an underapproximation for context-free languages by filtering out runs of the underlying pushdown automaton depending on how the stack height evolves over time. In particular, we assign to each run a number quantifying the oscillating beha
The paper proposes a simple formalism for dealing with deterministic, non-deterministic and stochastic cellular automata in a unifying and composable manner. Armed with this formalism, we extend the notion of intrinsic simulation between deterministi
We prove that some fairly basic questions on automata reading infinite words depend on the models of the axiomatic system ZFC. It is known that there are only three possibilities for the cardinality of the complement of an omega-language $L(A)$ accep
The potential of the exact quantum information processing is an interesting, important and intriguing issue. For examples, it has been believed that quantum tools can provide significant, that is larger than polynomial, advantages in the case of exac