ﻻ يوجد ملخص باللغة العربية
A set is called recurrent if its minimal automaton is strongly connected and birecurrent if it is recurrent as well as its reversal. We prove a series of results concerning birecurrent sets. It is already known that any birecurrent set is completely reducible (that is, such that the minimal representation of its characteristic series is completely reducible). The main result of this paper characterizes completely reducible sets as linear combinations of birecurrent sets
In this note we study automata recognizing birecurrent sets. A set of words is birecurrent if the minimal partial DFA recognizing this set and the minimal partial DFA recognizing the reversal of this set are both strongly connected. This notion was i
We study the family of rational sets of words, called completely reducible and which are such that the syntactic representation of their characteristic series is completely reducible. This family contains, by a result of Reutenauer, the submonoids ge
Given a (finite or infinite) subset $X$ of the free monoid $A^*$ over a finite alphabet $A$, the rank of $X$ is the minimal cardinality of a set $F$ such that $X subseteq F^*$. We say that a submonoid $M$ generated by $k$ elements of $A^*$ is {em $k$
Given a (finite or infinite) subset $X$ of the free monoid $A^*$ over a finite alphabet $A$, the rank of $X$ is the minimal cardinality of a set $F$ such that $X subseteq F^*$. A submonoid $M$ generated by $k$ elements of $A^*$ is $k$-maximal if ther
We survey a vast array of known results and techniques in the area of polynomial identities in pointed Hopf algebras. Some new results are proven in the setting of Hopf algebras that appeared in papers of D. Radford and N. Andruskiewitsch - H.-J. Schneider.