ترغب بنشر مسار تعليمي؟ اضغط هنا

The role of temperature and Coulomb correlation in stabilization of CsCl-phase in FeS under pressure

124   0   0.0 ( 0 )
 نشر من قبل Alexey Shorikov
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The iron-sulfur system is important for planetary interiors and is intensely studied, particularly for better understanding of the cores of Mars and Earth. Yet, there is a paradox about high-pressure stability of FeS: ab initio global optimization (at DFT level) predicts a Pmmn phase (with a distorted rocksalt structure) to be stable at pressures above ~120 GPa, which has not yet been observed in the experiments that instead revealed a CsCl-type phase which, according to density functional calculations, should not be stable. Using quasiharmonic free energy calculations and the dynamical mean field theory, we show that this apparent discrepancy is removed by proper account of electron correlations and entropic effects.



قيم البحث

اقرأ أيضاً

We have studied the pressure dependence of the magnetization of single crystalline CeSi_1.81. At ambient pressure ferromagnetism develops below T_C = 9.5 Below ~ 5 K an additional shoulder in low-field hysteresis loops and a metamagnetic crossover ar ound 4 T suggest the appearance of an additional magnetic modulation to the ferromagnetic state. The suppression of the magnetic order in CeSi_1.81 as function of temperature at ambient pressure and as function of pressure at low temperature are in remarkable qualitative agreement. The continuous suppression of the ordered moment at p ~ 13.1 kbar suggests the existence of a ferromagnetic quantum critical point in this material.
We report a combined study of in-plane resistivity and thermopower of the pressure-induced heavy fermion superconductor CeAu2Si2 up to 27.8 GPa. It is found that thermopower follows a scaling behavior in T/T* almost up to the magnetic critical pressu re pc ~ 22 GPa. By comparing with resistivity results, we show that the magnitude and characteristic temperature dependence of thermopower in this pressure range are governed by the Kondo coupling and crystal-field splitting, respectively. Below pc, the superconducting transition is preceded by a large negative thermopower minimum, suggesting a close relationship between the two phenomena. Furthermore, thermopower of a variety of Ce-based Kondo-lattices with different crystal structures follows the same scaling relation up to T/T* ~ 2.
117 - B. Sandow , K. Gloos , R. Rentzsch 2000
We have investigated the effect of the long-range Coulomb interaction on the one-particle excitation spectrum of n-type Germanium, using tunneling spectroscopy on mechanically controllable break junctions. The tunnel conductance was measured as a fun ction of energy and temperature. At low temperatures, the spectra reveal a minimum at zero bias voltage due to the Coulomb gap. In the temperature range above 1 K the Coulomb gap is filled by thermal excitations. This behavior is reflected in the temperature dependence of the variable-range hopping resitivity measured on the same samples: Up to a few degrees Kelvin the Efros-Shkovskii ln$R propto T^{-1/2}$ law is obeyed, whereas at higher temperatures deviations from this law are observed, indicating a cross-over to Motts ln$R propto T^{-1/4}$ law. The mechanism of this cross-over is different from that considered previously in the literature.
We present temperature dependent resistivity and ac-calorimetry measurements of CeVSb3 under pressure up to 8 GPa in a Bridgman anvil cell modified to use a liquid medium and in a diamond anvil cell using argon as a pressure medium, respectively. We observe an initial increase of the ferromagnetic transition temperature Tc with pressures up to 4.5 GPa, followed by decrease of Tc on further increase of pressure and finally its disappearance, in agreement with the Doniach model. We infer a ferromagnetic quantum critical point around 7 GPa under hydrostatic pressure conditions from the extrapolation to 0 K of Tc and the maximum of the A coefficient from low temperature fits of the resistivity rho (T)=rho_{0}+AT^{n}. No superconductivity under pressure was observed down to 0.35 K for this compound. In addition, differences in the Tc(P) behavior when a slight uniaxial component is present are noticed and discussed and correlated to choice of pressure medium.
151 - J. Zhang , F. L. Liu , T. P. Ying 2016
As the simplest iron-based superconductor, FeSe forms a tetragonal structure with transition temperature Tc ~ 8 K. With assistance of pressure, or other techniques, Tc can be greatly enhanced, even to above liquid nitrogen temperature. The newly disc overed superconducting tetragonal FeS (Tc ~ 4.5 K), a sulfide counterpart of FeSe, promotes us on its high pressure investigation. The transport and structure evolution of FeS with pressure have been studied. A rapid suppression of Tc and vanishing of superconductivity at 4.0 GPa are observed, followed by a second superconducting dome with a 30% enhancement in maximum Tc. An onsite tetragonal to hexagonal phase transition occurs around 7.0 GPa, followed by a broad pressure range of phase coexistence. The residual deformed tetragonal phase is considered as the source of second superconducting dome. The observation of two superconducting domes in iron-based superconductors poses great challenges for understanding their pairing mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا