ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of two distinct superconducting domes under pressure in tetragonal FeS

152   0   0.0 ( 0 )
 نشر من قبل Shiyan Li
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As the simplest iron-based superconductor, FeSe forms a tetragonal structure with transition temperature Tc ~ 8 K. With assistance of pressure, or other techniques, Tc can be greatly enhanced, even to above liquid nitrogen temperature. The newly discovered superconducting tetragonal FeS (Tc ~ 4.5 K), a sulfide counterpart of FeSe, promotes us on its high pressure investigation. The transport and structure evolution of FeS with pressure have been studied. A rapid suppression of Tc and vanishing of superconductivity at 4.0 GPa are observed, followed by a second superconducting dome with a 30% enhancement in maximum Tc. An onsite tetragonal to hexagonal phase transition occurs around 7.0 GPa, followed by a broad pressure range of phase coexistence. The residual deformed tetragonal phase is considered as the source of second superconducting dome. The observation of two superconducting domes in iron-based superconductors poses great challenges for understanding their pairing mechanism.



قيم البحث

اقرأ أيضاً

The nematic electronic state and its associated nematic critical fluctuations have emerged as potential candidates for superconducting pairing in various unconventional superconductors. However, in most materials their coexistence with other magnetic ally-ordered phases poses significant challenges in establishing their importance. Here, by combining chemical and hydrostatic physical pressure in FeSe$_{0.89}$S$_{0.11}$, we provide a unique access to a clean nematic quantum phase transition in the absence of a long-range magnetic order. We find that in the proximity of the nematic phase transition, there is an unusual non-Fermi liquid behavior in resistivity at high temperatures that evolves into a Fermi liquid behaviour at the lowest temperatures. From quantum oscillations in high magnetic fields, we trace the evolution of the Fermi surface and electronic correlations as a function of applied pressure. We detect experimentally a Lifshitz transition that separates two distinct superconducting regions: one emerging from the nematic electronic phase with a small Fermi surface and strong electronic correlations and the other one with a large Fermi surface and weak correlations that promotes nesting and stabilization of a magnetically-ordered phase at high pressures. The lack of mass divergence suggests that the nematic critical fluctuations are quenched by the strong coupling to the lattice. This establishes that superconductivity is not enhanced at the nematic quantum phase transition in the absence of magnetic order.
103 - C. C. Zhao , L. S. Wang , W. Xia 2021
Recently superconductivity was discovered in the Kagome metal AV3Sb5 (A = K, Rb, and Cs), which has an ideal Kagome lattice of vanadium. These V-based superconductors also host charge density wave (CDW) and topological nontrivial band structure. Here we report the ultralow-temperature thermal conductivity and high pressure resistance measurements on CsV3Sb5 with Tc = 2.5 K, the highest among AV3Sb5. A finite residual linear term of thermal conductivity at zero magnetic field and its rapid increase in fields suggest nodal superconductivity. By applying pressure, the Tc of CsV3Sb5 increases first, then decreases to lower than 0.3 K at 11.4 GPa, showing a clear first superconducting dome peaked around 0.8 GPa. Above 11.4 GPa, superconductivity re-emerges, suggesting a second superconducting dome. Both nodal superconductivity and superconducting domes point to unconventional superconductivity in this V-based superconductor. While our finding of nodal superconductivity puts a strong constrain on the pairing state of the first dome, which should be related to the CDW instability, the superconductivity of the second dome may present another exotic pairing state in this ideal Kagome lattice of vanadium.
130 - Ping Ai , Qiang Gao , Jing Liu 2019
High resolution laser-based angle-resolved photoemission measurements were carried out on an overdoped $Bi_2Sr_2CaCu_2O_{8+delta}$ superconductor with a Tc of 75 K. Two Fermi surface sheets caused by bilayer splitting are clearly identified with rath er different doping levels: the bonding sheet corresponds to a doping level of 0.14 which is slightly underdoped while the antibonding sheet has a doping of 0.27 that is heavily overdoped, giving an overall doping level of 0.20 for the sample. Different superconducting gap sizes on the two Fermi surface sheets are revealed for the first time. The superconducting gap on the antibonding Fermi surface sheet follows a standard d-wave form while it deviates from the standard d-wave form for the bonding Fermi surface sheet. The maximum gap difference between the two Fermi surface sheets near the antinodal region is $sim$2 meV. These observations provide important information for studying the relationship between the Fermi surface topology and superconductivity, and the layer-dependent superconductivity in high temperature cuprate superconductors.
We report measurements of ac magnetic susceptibility $chi_{ac}$ and de Haas-van Alphen (dHvA) oscillations in KFe$_2$As$_2$ under high pressure up to 24.7 kbar. The pressure dependence of the superconducting transition temperature $T_c$ changes from negative to positive across $P_c sim 18$ kbar as previously reported. The ratio of the upper critical field to $T_c$, i.e, $B_{c2} / T_c$, is enhanced above $P_c$, and the shape of $chi_{ac}$ vs field curves qualitatively changes across $P_c$. DHvA oscillations smoothly evolve across $P_c$ and indicate no drastic change in the Fermi surface up to 24.7 kbar. Three dimensionality increases with pressure, while effective masses show decreasing trends. We suggest a crossover from a nodal to a full-gap $s$ wave as a possible explanation.
150 - C. Y. Guo , Y. Chen , M. Smidman 2015
We present a pressure study of the electrical resistivity, AC magnetic susceptibility and powder x-ray diffraction (XRD) of the newly discovered BiS$_2$-based superconductor EuBiS$_2$F. At ambient pressure, EuBiS$_2$F shows an anomaly in the resistiv ity at around $T_0approx 280$ K and a superconducting transition at $T_capprox 0.3$ K. Upon applying hydrostatic pressure, there is little change in $T_0$ but the amplitude of the resistive anomaly is suppressed, whereas there is a dramatic enhancement of $T_c$ from 0.3 K to about 8.6 K at a critical pressure of $p_c$ $approx{1.4}$ GPa. XRD measurements confirm that this enhancement of $T_c$ coincides with a structural phase transition from a tetragonal phase ($P4/nmm$) to a monoclinic phase ($P2_1$/m), which is similar to that observed in isostructural LaO$_{0.5}$F$_{0.5}$BiS$_2$. Our results suggest the presence of two different superconducting phases with distinct crystal structures in EuBiS$_2$F, which may be a general property of this family of BiS$_2$-based superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا