ترغب بنشر مسار تعليمي؟ اضغط هنا

Provable defenses against adversarial examples via the convex outer adversarial polytope

120   0   0.0 ( 0 )
 نشر من قبل Eric Wong
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a method to learn deep ReLU-based classifiers that are provably robust against norm-bounded adversarial perturbations on the training data. For previously unseen examples, the approach is guaranteed to detect all adversarial examples, though it may flag some non-adversarial examples as well. The basic idea is to consider a convex outer approximation of the set of activations reachable through a norm-bounded perturbation, and we develop a robust optimization procedure that minimizes the worst case loss over this outer region (via a linear program). Crucially, we show that the dual problem to this linear program can be represented itself as a deep network similar to the backpropagation network, leading to very efficient optimization approaches that produce guaranteed bounds on the robust loss. The end result is that by executing a few more forward and backward passes through a slightly modified version of the original network (though possibly with much larger batch sizes), we can learn a classifier that is provably robust to any norm-bounded adversarial attack. We illustrate the approach on a number of tasks to train classifiers with robust adversarial guarantees (e.g. for MNIST, we produce a convolutional classifier that provably has less than 5.8% test error for any adversarial attack with bounded $ell_infty$ norm less than $epsilon = 0.1$), and code for all experiments in the paper is available at https://github.com/locuslab/convex_adversarial.

قيم البحث

اقرأ أيضاً

Recent work has developed methods for learning deep network classifiers that are provably robust to norm-bounded adversarial perturbation; however, these methods are currently only possible for relatively small feedforward networks. In this paper, in an effort to scale these approaches to substantially larger models, we extend previous work in three main directions. First, we present a technique for extending these training procedures to much more general networks, with skip connections (such as ResNets) and general nonlinearities; the approach is fully modular, and can be implemented automatically (analogous to automatic differentiation). Second, in the specific case of $ell_infty$ adversarial perturbations and networks with ReLU nonlinearities, we adopt a nonlinear random projection for training, which scales linearly in the number of hidden units (previous approaches scaled quadratically). Third, we show how to further improve robust error through cascade models. On both MNIST and CIFAR data sets, we train classifiers that improve substantially on the state of the art in provable robust adversarial error bounds: from 5.8% to 3.1% on MNIST (with $ell_infty$ perturbations of $epsilon=0.1$), and from 80% to 36.4% on CIFAR (with $ell_infty$ perturbations of $epsilon=2/255$). Code for all experiments in the paper is available at https://github.com/locuslab/convex_adversarial/.
Following the recent adoption of deep neural networks (DNN) accross a wide range of applications, adversarial attacks against these models have proven to be an indisputable threat. Adversarial samples are crafted with a deliberate intention of underm ining a system. In the case of DNNs, the lack of better understanding of their working has prevented the development of efficient defenses. In this paper, we propose a new defense method based on practical observations which is easy to integrate into models and performs better than state-of-the-art defenses. Our proposed solution is meant to reinforce the structure of a DNN, making its prediction more stable and less likely to be fooled by adversarial samples. We conduct an extensive experimental study proving the efficiency of our method against multiple attacks, comparing it to numerous defenses, both in white-box and black-box setups. Additionally, the implementation of our method brings almost no overhead to the training procedure, while maintaining the prediction performance of the original model on clean samples.
Despite the remarkable success of deep neural networks, significant concerns have emerged about their robustness to adversarial perturbations to inputs. While most attacks aim to ensure that these are imperceptible, physical perturbation attacks typi cally aim for being unsuspicious, even if perceptible. However, there is no universal notion of what it means for adversarial examples to be unsuspicious. We propose an approach for modeling suspiciousness by leveraging cognitive salience. Specifically, we split an image into foreground (salient region) and background (the rest), and allow significantly larger adversarial perturbations in the background, while ensuring that cognitive salience of background remains low. We describe how to compute the resulting non-salience-preserving dual-perturbation attacks on classifiers. We then experimentally demonstrate that our attacks indeed do not significantly change perceptual salience of the background, but are highly effective against classifiers robust to conventional attacks. Furthermore, we show that adversarial training with dual-perturbation attacks yields classifiers that are more robust to these than state-of-the-art robust learning approaches, and comparable in terms of robustness to conventional attacks.
Training convolutional neural networks (CNNs) with a strict Lipschitz constraint under the l_{2} norm is useful for provable adversarial robustness, interpretable gradients and stable training. While 1-Lipschitz CNNs can be designed by enforcing a 1- Lipschitz constraint on each layer, training such networks requires each layer to have an orthogonal Jacobian matrix (for all inputs) to prevent gradients from vanishing during backpropagation. A layer with this property is said to be Gradient Norm Preserving (GNP). To construct expressive GNP activation functions, we first prove that the Jacobian of any GNP piecewise linear function is only allowed to change via Householder transformations for the function to be continuous. Building on this result, we introduce a class of nonlinear GNP activations with learnable Householder transformations called Householder activations. A householder activation parameterized by the vector $mathbf{v}$ outputs $(mathbf{I} - 2mathbf{v}mathbf{v}^{T})mathbf{z}$ for its input $mathbf{z}$ if $mathbf{v}^{T}mathbf{z} leq 0$; otherwise it outputs $mathbf{z}$. Existing GNP activations such as $mathrm{MaxMin}$ can be viewed as special cases of $mathrm{HH}$ activations for certain settings of these transformations. Thus, networks with $mathrm{HH}$ activations have higher expressive power than those with $mathrm{MaxMin}$ activations. Although networks with $mathrm{HH}$ activations have nontrivial provable robustness against adversarial attacks, we further boost their robustness by (i) introducing a certificate regularization and (ii) relaxing orthogonalization of the last layer of the network. Our experiments on CIFAR-10 and CIFAR-100 show that our regularized networks with $mathrm{HH}$ activations lead to significant improvements in both the standard and provable robust accuracy over the prior works (gain of 3.65% and 4.46% on CIFAR-100 respectively).
Adversarial training and its variants have become de facto standards for learning robust deep neural networks. In this paper, we explore the landscape around adversarial training in a bid to uncover its limits. We systematically study the effect of d ifferent training losses, model sizes, activation functions, the addition of unlabeled data (through pseudo-labeling) and other factors on adversarial robustness. We discover that it is possible to train robust models that go well beyond state-of-the-art results by combining larger models, Swish/SiLU activations and model weight averaging. We demonstrate large improvements on CIFAR-10 and CIFAR-100 against $ell_infty$ and $ell_2$ norm-bounded perturbations of size $8/255$ and $128/255$, respectively. In the setting with additional unlabeled data, we obtain an accuracy under attack of 65.88% against $ell_infty$ perturbations of size $8/255$ on CIFAR-10 (+6.35% with respect to prior art). Without additional data, we obtain an accuracy under attack of 57.20% (+3.46%). To test the generality of our findings and without any additional modifications, we obtain an accuracy under attack of 80.53% (+7.62%) against $ell_2$ perturbations of size $128/255$ on CIFAR-10, and of 36.88% (+8.46%) against $ell_infty$ perturbations of size $8/255$ on CIFAR-100. All models are available at https://github.com/deepmind/deepmind-research/tree/master/adversarial_robustness.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا