ﻻ يوجد ملخص باللغة العربية
Steep-slope $beta$-Ga$_2$O$_3$ nano-membrane negative capacitance field-effect transistors (NC-FETs) are demonstrated with ferroelectric hafnium zirconium oxide in gate dielectric stack. Subthreshold slope less than 60 mV/dec at room temperature is obtained for both forward and reverse gate voltage sweeps with a minimum value of 34.3 mV/dec at reverse gate voltage sweep and 53.1 mV/dec at forward gate voltage sweep at $V_{DS}$=0.5 V. Enhancement-mode operation with threshold voltage ~0.4 V is achieved by tuning the thickness of $beta$-Ga$_2$O$_3$ membrane. Low hysteresis of less than 0.1 V is obtained. The steep-slope, low hysteresis and enhancement-mode $beta$-Ga$_2$O$_3$ NC-FETs are promising as nFET candidate for future wide bandgap CMOS logic applications.
Integrating negative capacitance (NC) into the field-effect transistors promises to break fundamental limits of power dissipation known as Boltzmann tyranny. However, realization of the stable static negative capacitance in the non-transient regime w
Point defects in crystalline materials often occur in multiple charge states. Although many experimental methods to study and explore point defects are available, techniques to explore the non-equilibrium dynamics of the charge states of these defect
The so-called Boltzmann Tyranny defines the fundamental thermionic limit of the subthreshold slope (SS) of a metal-oxide-semiconductor field-effect transistor (MOSFET) at 60 mV/dec at room temperature and, therefore, precludes the lowering of the sup
We introduce a deep-recessed gate architecture in $beta$-Ga$_2$O$_3$ delta-doped field effect transistors for improvement in DC-RF dispersion and breakdown properties. The device design incorporates an unintentionally doped $beta$-Ga$_2$O$_3$ layer a
The epitaxial growth of technically-important $beta$-Ga$_2$O$_3$ semiconductor thin films have not been realized on flexible substrates due to limitations by the high-temperature crystallization conditions and the lattice-matching requirements. In th