ترغب بنشر مسار تعليمي؟ اضغط هنا

On nonlinear scattering for quantum walks

109   0   0.0 ( 0 )
 نشر من قبل Kanako Suzuki
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study large time behavior of quantum walks (QW) with self-dependent coin. In particular, we show scattering and derive the reproducing formula for inverse scattering in the weak nonlinear regime. The proof is based on space-time estimate of (linear) QW such as Strichartz estimate. Such argument is standard in the study of nonlinear Schrodinger equations but it seems to be the first time to be applied to QW. We also numerically study the dynamics of QW and observe soliton like solutions.



قيم البحث

اقرأ أيضاً

We study large time behavior of quantum walks (QWs) with self-dependent (nonlinear) coin. In particular, we show scattering and derive the reproducing formula for inverse scattering in the weak nonlinear regime. The proof is based on space-time estim ate of (linear) QWs such as dispersive estimates and Strichartz estimate. Such argument is standard in the study of nonlinear Schrodinger equations and discrete nonlinear Schrodinger equations but it seems to be the first time to be applied to QW.
We consider quantum walks with position dependent coin on 1D lattice $mathbb{Z}$. The dispersive estimate $|U^tP_c u_0|_{l^infty}lesssim (1+|t|)^{-1/3} |u_0|_{l^1}$ is shown under $l^{1,1}$ perturbation for the generic case and $l^{1,2}$ perturbation for the exceptional case, where $U$ is the evolution operator of a quantum walk and $P_c$ is the projection to the continuous spectrum. This is an analogous result for Schrodinger operators and discrete Schrodinger operators. The proof is based on the estimate of oscillatory integrals expressed by Jost solutions.
We give a new determinant expression for the characteristic polynomial of the bond scattering matrix of a quantum graph G. Also, we give a decomposition formula for the characteristic polynomial of the bond scattering matrix of a regular covering of G. Furthermore, we define an L-function of G, and give a determinant expression of it. As a corollary, we express the characteristic polynomial of the bond scattering matrix of a regular covering of G by means of its L-functions. As an application, we introduce three types of quantum graph walks, and treat their relation.
We prove the existence of scattering states for the defocusing cubic Gross-Pitaevskii (GP) hierarchy in ${mathbb R}^3$. Moreover, we show that an energy growth condition commonly used in the well-posedness theory of the GP hierarchy is, in a specific sense, necessary. In fact, we prove that without the latter, there exist initial data for the focusing cubic GP hierarchy for which instantaneous blowup occurs.
We study the behavior of the soliton solutions of the equation i((partial{psi})/(partialt))=-(1/(2m)){Delta}{psi}+(1/2)W_{{epsilon}}({psi})+V(x){psi} where W_{{epsilon}} is a suitable nonlinear term which is singular for {epsilon}=0. We use the stron g nonlinearity to obtain results on existence, shape, stability and dynamics of the soliton. The main result of this paper (Theorem 1) shows that for {epsilon}to0 the orbit of our soliton approaches the orbit of a classical particle in a potential V(x).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا