ﻻ يوجد ملخص باللغة العربية
We prove the existence of scattering states for the defocusing cubic Gross-Pitaevskii (GP) hierarchy in ${mathbb R}^3$. Moreover, we show that an energy growth condition commonly used in the well-posedness theory of the GP hierarchy is, in a specific sense, necessary. In fact, we prove that without the latter, there exist initial data for the focusing cubic GP hierarchy for which instantaneous blowup occurs.
We present a new, simpler proof of the unconditional uniqueness of solutions to the cubic Gross-Pitaevskii hierarchy in $R^3$. One of the main tools in our analysis is the quantum de Finetti theorem. Our uniqueness result is equivalent to the one est
We study the time-dependent Gross-Pitaevskii equation describing Bose-Einstein condensation of trapped dipolar quantum gases. Existence and uniqueness as well as the possible blow-up of solutions are studied. Moreover, we discuss the problem of dimen
In this paper, we establish the global well-posedness of the Cauchy problem for the Gross-Pitaevskii equation with an rotational angular momentum term in the space $Real^2$.
We study large time behavior of quantum walks (QW) with self-dependent coin. In particular, we show scattering and derive the reproducing formula for inverse scattering in the weak nonlinear regime. The proof is based on space-time estimate of (linea
We study large time behavior of quantum walks (QWs) with self-dependent (nonlinear) coin. In particular, we show scattering and derive the reproducing formula for inverse scattering in the weak nonlinear regime. The proof is based on space-time estim