ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of barrier vs tilt exchange gate operations in spin-based quantum computing

180   0   0.0 ( 0 )
 نشر من قبل Yun-Pil Shim
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a theory for understanding the exchange interaction between electron spins in neighboring quantum dots, either by changing the detuning of the two quantum dots or independently tuning the tunneling barrier between quantum dots. The Hubbard model and a more realistic confining-potential model are used to investigate how the tilting and barrier control affect the effective exchange coupling and thus the gate fidelity in both the detuning and symmetric regimes. We show that the exchange coupling is less sensitive to the charge noise through tunnel barrier control (while allowing for exchange coupling operations on a sweet spot where the exchange interaction has zero derivative with respect to the detuning). Both GaAs and Si quantum dots are considered and we compare our results with experimental data showing qualitative agreements. Our results answer the open question of why barrier gates are preferable to tilt gates for exchange-base gate operations.

قيم البحث

اقرأ أيضاً

We present a scheme for correcting for crosstalk- and noise-induced errors in exchange-coupled singlet-triplet semiconductor double quantum dot qubits. While exchange coupling allows the coupling strength to be controlled independently of the intraqu bit exchange couplings, there is also the problem of leakage, which must be addressed. We show that, if a large magnetic field difference is present between the two qubits, leakage is suppressed. We then develop pulse sequences that correct for crosstalk- and noise-induced errors and present parameters describing them for the 24 Clifford gates. We determine the infidelity for both the uncorrected and corrected gates as a function of the error-inducing terms and show that our corrected pulse sequences reduce the error by several orders of magnitude.
We introduce an always-on, exchange-only qubit made up of three localized semiconductor spins that offers a true sweet spot to fluctuations of the quantum dot energy levels. Both single- and two-qubit gate operations can be performed using only excha nge pulses while maintaining this sweet spot. We show how to interconvert this qubit to other three-spin encoded qubits as a new resource for quantum computation and communication.
Resonant exchange qubits are a promising addition to the family of experimentally implemented encodings of single qubits using semiconductor quantum dots. We have shown previously that it ought to be straightforward to perform a CPHASE gate between t wo resonant exchange qubits with a single exchange pulse. This approach uses energy gaps to suppress leakage rather than conventional pulse sequences. In this paper we present analysis and simulations of our proposed two-qubit gate subject to charge and Overhauser field noise at levels observed in current experiments. Our main result is that we expect implementations of our two-qubit gate to achieve high fidelities, with errors at the percent level and gate times comparable to single-qubit operations. As such, exchange-coupled resonant exchange qubits remain an attractive approach for quantum computing.
We introduce a silicon metal-oxide-semiconductor quantum dot architecture based on a single polysilicon gate stack. The elementary structure consists of two enhancement gates separated spatially by a gap, one gate forming a reservoir and the other a quantum dot. We demonstrate, in three devices based on two differe
102 - Peihao Huang 2021
A spin qubit in semiconductor quantum dots holds promise for quantum information processing for scalability and long coherence time. An important semiconductor qubit system is a double quantum dot trapping two electrons or holes, whose spin states en code either a singlet-triplet qubit or two single-spin qubits coupled by exchange interaction. In this article, we report progress on spin dephasing of two exchange-coupled spins in a double quantum dot. We first discuss the schemes of two-qubit gates and qubit encodings in gate-defined quantum dots or donor atoms based on the exchange interaction. Then, we report the progress on spin dephasing of a singlet-triplet qubit or a two-qubit gate. The methods of suppressing spin dephasing are further discussed. The understanding of spin dephasing may provide insights into the realization of high-fidelity quantum gates for spin-based quantum computing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا