ترغب بنشر مسار تعليمي؟ اضغط هنا

Introduction of total variation regularization into filtered backprojection algorithm

396   0   0.0 ( 0 )
 نشر من قبل Neha Gupta Sharma
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we extend the state-of-the-art filtered backprojection (FBP) method with application of the concept of Total Variation regularization. We compare the performance of the new algorithm with the most common form of regularizing in the FBP image reconstruction via apodizing functions. The methods are validated in terms of cross-correlation coefficient between reconstructed and real image of radioactive tracer distribution using standard Derenzo-type phantom. We demonstrate that the proposed approach results in higher cross-correlation values with respect to the standard FBP method.



قيم البحث

اقرأ أيضاً

166 - Zhen Tian , Xun Jia , Kehong Yuan 2010
High radiation dose in CT scans increases a lifetime risk of cancer and has become a major clinical concern. Recently, iterative reconstruction algorithms with Total Variation (TV) regularization have been developed to reconstruct CT images from high ly undersampled data acquired at low mAs levels in order to reduce the imaging dose. Nonetheless, TV regularization may lead to over-smoothed images and lost edge information. To solve this problem, in this work we develop an iterative CT reconstruction algorithm with edge-preserving TV regularization to reconstruct CT images from highly undersampled data obtained at low mAs levels. The CT image is reconstructed by minimizing an energy consisting of an edge-preserving TV norm and a data fidelity term posed by the x-ray projections. The edge-preserving TV term is proposed to preferentially perform smoothing only on non-edge part of the image in order to avoid over-smoothing, which is realized by introducing a penalty weight to the original total variation norm. Our iterative algorithm is implemented on GPU to improve its speed. We test our reconstruction algorithm on a digital NCAT phantom, a physical chest phantom, and a Catphan phantom. Reconstruction results from a conventional FBP algorithm and a TV regularization method without edge preserving penalty are also presented for comparison purpose. The experimental results illustrate that both TV-based algorithm and our edge-preserving TV algorithm outperform the conventional FBP algorithm in suppressing the streaking artifacts and image noise under the low dose context. Our edge-preserving algorithm is superior to the TV-based algorithm in that it can preserve more information of fine structures and therefore maintain acceptable spatial resolution.
We consider total variation minimization for manifold valued data. We propose a cyclic proximal point algorithm and a parallel proximal point algorithm to minimize TV functionals with $ell^p$-type data terms in the manifold case. These algorithms are based on iterative geodesic averaging which makes them easily applicable to a large class of data manifolds. As an application, we consider denoising images which take their values in a manifold. We apply our algorithms to diffusion tensor images, interferometric SAR images as well as sphere and cylinder valued images. For the class of Cartan-Hadamard manifolds (which includes the data space in diffusion tensor imaging) we show the convergence of the proposed TV minimizing algorithms to a global minimizer.
137 - Alastair Basden 2015
We investigate the improvements in Shack-Hartmann wavefront sensor image processing that can be realised using total variation minimisation techniques to remove noise from these images. We perform Monte-Carlo simulation to demonstrate that at certain signal-to-noise levels, sensitivity improvements of up to one astronomical magnitude can be realised. We also present on-sky measurements taken with the CANARY adaptive optics system that demonstrate an improvement in performance when this technique is employed, and show that this algorithm can be implemented in a real-time control system. We conclude that total variation minimisation can lead to improvements in sensitivity of up to one astronomical magnitude when used with adaptive optics systems.
In order to determine the 3D structure of a thick sample, researchers have recently combined ptychography (for high resolution) and tomography (for 3D imaging) in a single experiment. 2-step methods are usually adopted for reconstruction, where the p tychography and tomography problems are often solved independently. In this paper, we provide a novel model and ADMM-based algorithm to jointly solve the ptychography-tomography problem iteratively, also employing total variation regularization. The proposed method permits large scan stepsizes for the ptychography experiment, requiring less measurements and being more robust to noise with respect to other strategies, while achieving higher reconstruction quality results.
We perform a parametric study of the newly developed time-of-flight (TOF) image reconstruction algorithm, proposed for the real-time imaging in total-body Jagiellonian PET (J-PET) scanners. The asymmetric 3D filtering kernel is applied at each most l ikely position of electron-positron annihilation, estimated from the emissions of back-to-back $gamma$-photons. The optimisation of its parameters is studied using Monte Carlo simulations of a 1-mm spherical source, NEMA IEC and XCAT phantoms inside the ideal J-PET scanner. The combination of high-pass filters which included the TOF filtered back-projection (FBP), resulted in spatial resolution, 1.5 $times$ higher in the axial direction than for the conventional 3D FBP. For realistic $10$-minute scans of NEMA IEC and XCAT, which require a trade-off between the noise and spatial resolution, the need for Gaussian TOF kernel components, coupled with median post-filtering, is demonstrated. The best sets of 3D filter parameters were obtained by the Nelder-Mead minimisation of the mean squared error between the resulting and reference images. The approach allows training the reconstruction algorithm for custom scans, using the IEC phantom, when the temporal resolution is below 50 ps. The image quality parameters, estimated for the best outcomes, were systematically better than for the non-TOF FBP.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا