ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimisation of the event-based TOF filtered back-projection for online imaging in total-body J-PET

196   0   0.0 ( 0 )
 نشر من قبل Roman Shopa Y
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform a parametric study of the newly developed time-of-flight (TOF) image reconstruction algorithm, proposed for the real-time imaging in total-body Jagiellonian PET (J-PET) scanners. The asymmetric 3D filtering kernel is applied at each most likely position of electron-positron annihilation, estimated from the emissions of back-to-back $gamma$-photons. The optimisation of its parameters is studied using Monte Carlo simulations of a 1-mm spherical source, NEMA IEC and XCAT phantoms inside the ideal J-PET scanner. The combination of high-pass filters which included the TOF filtered back-projection (FBP), resulted in spatial resolution, 1.5 $times$ higher in the axial direction than for the conventional 3D FBP. For realistic $10$-minute scans of NEMA IEC and XCAT, which require a trade-off between the noise and spatial resolution, the need for Gaussian TOF kernel components, coupled with median post-filtering, is demonstrated. The best sets of 3D filter parameters were obtained by the Nelder-Mead minimisation of the mean squared error between the resulting and reference images. The approach allows training the reconstruction algorithm for custom scans, using the IEC phantom, when the temporal resolution is below 50 ps. The image quality parameters, estimated for the best outcomes, were systematically better than for the non-TOF FBP.

قيم البحث

اقرأ أيضاً

We present a method and preliminary results of the image reconstruction in the Jagiellonian PET tomograph. Using GATE (Geant4 Application for Tomographic Emission), interactions of the 511 keV photons with a cylindrical detector were generated. Pairs of such photons, flying back-to-back, originate from e+e- annihilations inside a 1-mm spherical source. Spatial and temporal coordinates of hits were smeared using experimental resolutions of the detector. We incorporated the algorithm of the 3D Filtered Back Projection, implemented in the STIR and TomoPy software packages, which differ in approximation methods. Consistent results for the Point Spread Functions of ~5/7,mm and ~9/20, mm were obtained, using STIR, for transverse and longitudinal directions, respectively, with no time of flight information included.
Dynamic positron emission tomography (dPET) is currently a widely used medical imaging technique for the clinical diagnosis, staging and therapy guidance of all kinds of human cancers. Higher temporal imaging resolution for the early stage of radiotr acer metabolism is desired; however, in this case, the reconstructed images with short frame durations always suffer from a limited image signal-to-noise ratio (SNR), which results in unsatisfactory image spatial resolution. In this work, we proposed a dPET processing method that denoises images with short frame durations via pixel-level time-activity curve (TAC) correction based on third-order Hermite interpolation (Pitch-In). The proposed method was validated using total-body dynamic PET image data and compared to several state-of-the-art methods to demonstrate its superior performance in terms of high temporal resolution dPET image noise reduction and imaging contrast. Higher stability and feasibility of the proposed Pitch-In method for future clinical application with high temporal resolution (HTR) dPET imaging can be expected.
The purpose of the presented research is estimation of the performance characteristics of the economic Total-Body Jagiellonian-PET system (TB-J-PET) constructed from plastic scintillators. The characteristics are estimated according to the NEMA NU-2- 2018 standards utilizing the GATE package. The simulated detector consists of 24 modules, each built out of 32 plastic scintillator strips (each with cross section of 6 mm times 30 mm and length of 140 cm or 200 cm) arranged in two layers in regular 24-sided polygon circumscribing a circle with the diameter of 78.6 cm. For the TB-J-PET with an axial field-of-view (AFOV) of 200 cm, a spatial resolutions of 3.7 mm (transversal) and 4.9 mm (axial) are achieved. The NECR peak of 630 kcps is expected at 30 kBq/cc activity concentration and the sensitivity at the center amounts to 38 cps/kBq. The SF is estimated to 36.2 %. The values of SF and spatial resolution are comparable to those obtained for the state-of-the-art clinical PET scanners and the first total-body tomographs: uExplorer and PennPET. With respect to the standard PET systems with AFOV in the range from 16 cm to 26 cm, the TB-J-PET is characterized by an increase in NECR approximately by factor of 4 and by the increase of the whole-body sensitivity by factor of 12.6 to 38. The TOF resolution for the TB-J-PET is expected to be at the level of CRT=240 ps (FWHM). For the TB-J-PET with an axial field-of-view (AFOV) of 140 cm, an image quality of the reconstructed images of a NEMA IEC phantom was presented with a contrast recovery coefficient (CRC) and a background variability parameters. The increase of the whole-body sensitivity and NECR estimated for the TB-J-PET with respect to current commercial PET systems makes the TB-J-PET a promising cost-effective solution for the broad clinical applications of total-body PET scanners.
The Jagiellonian Positron Emission Tomograph (J-PET) is the first PET built from plastic scintillators. J-PET prototype consists of 192 detection modules arranged axially in three layers forming a cylindrical diagnostic chamber with the inner diamete r of 85 cm and the axial field-of-view of 50 cm. An axial arrangement of long strips of plastic scintillators, their small light attenuation, superior timing properties, and relative ease of the increase of the axial field-of-view opens promising perspectives for the cost effective construction of the whole-body PET scanner, as well as construction of MR and CT compatible PET inserts. Present status of the development of the J-PET tomograph will be presented and discussed.
Low counts reconstruction remains a challenge for Positron Emission Tomography (PET) even with the recent progresses in time-of-flight (TOF) resolution. In that setting, the bias between the acquired histogram, composed of low values or zeros, and th e expected histogram, obtained from the forward projector, is propagated to the image, resulting in a biased reconstruction. This could be exacerbated with finer resolution of the TOF information, which further sparsify the acquired histogram. We propose a new approach to circumvent this limitation of the classical reconstruction model. It consists of extending the parametrization of the reconstruction scheme to also explicitly include the projection domain. This parametrization has greater degrees of freedom than the log-likelihood model, which can not be harnessed in classical circumstances. We hypothesize that with ultra-fast TOF this new approach would not only be viable for low counts reconstruction but also more adequate than the classical reconstruction model. An implementation of this approach is compared to the log-likelihood model by using two-dimensional simulations of a hot spots phantom. The proposed model achieves similar contrast recovery coefficients as MLEM except for the smallest structures where the low counts nature of the simulations makes it difficult to draw conclusions. Also, this new model seems to converge toward a less noisy solution than the MLEM. These results suggest that this new approach has potential for low counts reconstruction with ultra-fast TOF.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا