ﻻ يوجد ملخص باللغة العربية
Measurements of the high-frequency complex resistivity in superconductors are a tool often used to obtain the vortex parameters, such as the vortex viscosity, the pinning constant and the depinning frequency. In anisotropic superconductors, the extraction of these quantities from the measurements faces new difficulties due to the tensor nature of the electromagnetic problem. The problem is specifically intricate when the magnetic field is tilted with respect to the crystallographic axes. Partial solutions exist in the free-flux-flow (no pinning) and Campbell (pinning dominated) regimes. In this paper we develop a full tensor model for the vortex motion complex resistivity, including flux-flow, pinning, and creep. We give explicit expressions for the tensors involved. We obtain that, despite the complexity of the physics, some parameters remain scalar in nature. We show that under specific circumstances the directly measured quantities do not reflect the true vortex parameters, and we give procedures to derive the true vortex parameters from measurements taken with arbitrary field orientations. Finally, we discuss the applicability of the angular scaling properties to the measured and transformed vortex parameters and we exploit these properties as a tool to unveil the existence of directional pinning.
We present an exhaustive analysis of transport measurements performed in twinned YBa2Cu3O7 single crystals which stablishes that the vortex solid-liquid transition is first order when the magnetic field H is applied at an angle theta away from the di
The carrier transport and the motion of a vortex system in a mixed state of an electron-doped high-temperature superconductors Nd2-xCexCuO4 were investigated. To study the anisotropy of galvanomagnetic effects of highly layered NdCeCuO system we have
Many practical applications of high T$_c$ superconductors involve layered materials and magnetic fields applied on an arbitrary direction with respect to the layers. When the anisotropy is very large, Cooper pair currents can circulate either within
Anisotropic resistivities of Bi_2Sr_2Ca_{1-x}Er_xCu_2O_8 single crystals were measured and analyzed from 4.2 to 500 K with special interest in the parent antiferromagnetic insulator of x=1.0. Although the resistivity is semiconducting along both the
We numerically investigate the effect of in-plane anisotropic Fermi surface (FS) on the flux-flow resistivity $rho_{rm f}$ under rotating magnetic field on the basis of the quasiclassical Greens function method. We demonstrate that one can detect the