ﻻ يوجد ملخص باللغة العربية
We numerically investigate the effect of in-plane anisotropic Fermi surface (FS) on the flux-flow resistivity $rho_{rm f}$ under rotating magnetic field on the basis of the quasiclassical Greens function method. We demonstrate that one can detect the phase in pairing potential of Cooper pair through the field-angular dependence of $rho_{rm f}$ even if the FS has in-plane anisotropy. In addition, we point out one can detect the gap-node directions irrespective of the FS anisotropy by measuring $rho_{rm f}$ under rotating field.
We theoretically investigate the magnetic-field-angle dependence of the flux-flow resistivity $rho_{rm f}$ in unconventional superconductors. Two contributions to $rho_{rm f}$ are considered: one is the quasiparticle (QP) relaxation time $tau(bm{k}_{
We theoretically investigate the applied magnetic field-angle dependence of the flux-flow resistivity $rho_{rm f}(alpha_{rm M})$ for an uniaxially anisotropic Fermi surface. $rho_{rm f}$ is related to the quasiparticle scattering rate $varGamma$ insi
The flux flow resistivity associated with purely viscous motion of vortices in high-quality MgB_2 was measured by microwave surface impedance. Flux flow resistivity exhibits unusual field dependence with strong enhancement at low field, which is mark
We theoretically study the dependence of the quasiparticle (QP) scattering rate $varGamma$ on the uniaxial anisotropy of a Fermi surface with changing the magnetic field angle $alpha_{rm M}$. We consider the QP scattering due to the non-magnetic impu
We report resistivity and the Hall effect measurements in the normal and superconducting states of MgB2 single crystal. The resistivity has been found to be anisotropic with slightly temperature dependent resistivity ratio of about 3.5. The Hall cons