ترغب بنشر مسار تعليمي؟ اضغط هنا

Discrepancy-Based Algorithms for Non-Stationary Rested Bandits

177   0   0.0 ( 0 )
 نشر من قبل Giulia DeSalvo
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the multi-armed bandit problem where the rewards are realizations of general non-stationary stochastic processes, a setting that generalizes many existing lines of work and analyses. In particular, we present a theoretical analysis and derive regret guarantees for rested bandits in which the reward distribution of each arm changes only when we pull that arm. Remarkably, our regret bounds are logarithmic in the number of rounds under several natural conditions. We introduce a new algorithm based on classical UCB ideas combined with the notion of weighted discrepancy, a useful tool for measuring the non-stationarity of a stochastic process. We show that the notion of discrepancy can be used to design very general algorithms and a unified framework for the analysis of multi-armed rested bandit problems with non-stationary rewards. In particular, we show that we can recover the regret guarantees of many specific instances of bandit problems with non-stationary rewards that have been studied in the literature. We also provide experiments demonstrating that our algorithms can enjoy a significant improvement in practice compared to standard benchmarks.



قيم البحث

اقرأ أيضاً

Users of recommender systems often behave in a non-stationary fashion, due to their evolving preferences and tastes over time. In this work, we propose a practical approach for fast personalization to non-stationary users. The key idea is to frame th is problem as a latent bandit, where the prototypical models of user behavior are learned offline and the latent state of the user is inferred online from its interactions with the models. We call this problem a non-stationary latent bandit. We propose Thompson sampling algorithms for regret minimization in non-stationary latent bandits, analyze them, and evaluate them on a real-world dataset. The main strength of our approach is that it can be combined with rich offline-learned models, which can be misspecified, and are subsequently fine-tuned online using posterior sampling. In this way, we naturally combine the strengths of offline and online learning.
Cascading bandit (CB) is a popular model for web search and online advertising, where an agent aims to learn the $K$ most attractive items out of a ground set of size $L$ during the interaction with a user. However, the stationary CB model may be too simple to apply to real-world problems, where user preferences may change over time. Considering piecewise-stationary environments, two efficient algorithms, texttt{GLRT-CascadeUCB} and texttt{GLRT-CascadeKL-UCB}, are developed and shown to ensure regret upper bounds on the order of $mathcal{O}(sqrt{NLTlog{T}})$, where $N$ is the number of piecewise-stationary segments, and $T$ is the number of time slots. At the crux of the proposed algorithms is an almost parameter-free change-point detector, the generalized likelihood ratio test (GLRT). Comparing with existing works, the GLRT-based algorithms: i) are free of change-point-dependent information for choosing parameters; ii) have fewer tuning parameters; iii) improve at least the $L$ dependence in regret upper bounds. In addition, we show that the proposed algorithms are optimal (up to a logarithm factor) in terms of regret by deriving a minimax lower bound on the order of $Omega(sqrt{NLT})$ for piecewise-stationary CB. The efficiency of the proposed algorithms relative to state-of-the-art approaches is validated through numerical experiments on both synthetic and real-world datasets.
In this paper, we consider the Gaussian process (GP) bandit optimization problem in a non-stationary environment. To capture external changes, the black-box function is allowed to be time-varying within a reproducing kernel Hilbert space (RKHS). To t his end, we develop WGP-UCB, a novel UCB-type algorithm based on weighted Gaussian process regression. A key challenge is how to cope with infinite-dimensional feature maps. To that end, we leverage kernel approximation techniques to prove a sublinear regret bound, which is the first (frequentist) sublinear regret guarantee on weighted time-varying bandits with general nonlinear rewards. This result generalizes both non-stationary linear bandits and standard GP-UCB algorithms. Further, a novel concentration inequality is achieved for weighted Gaussian process regression with general weights. We also provide universal upper bounds and weight-dependent upper bounds for weighted maximum information gains. These results are potentially of independent interest for applications such as news ranking and adaptive pricing, where weights can be adopted to capture the importance or quality of data. Finally, we conduct experiments to highlight the favorable gains of the proposed algorithm in many cases when compared to existing methods.
Out of the rich family of generalized linear bandits, perhaps the most well studied ones are logisitc bandits that are used in problems with binary rewards: for instance, when the learner/agent tries to maximize the profit over a user that can select one of two possible outcomes (e.g., `click vs `no-click). Despite remarkable recent progress and improved algorithms for logistic bandits, existing works do not address practical situations where the number of outcomes that can be selected by the user is larger than two (e.g., `click, `show me later, `never show again, `no click). In this paper, we study such an extension. We use multinomial logit (MNL) to model the probability of each one of $K+1geq 2$ possible outcomes (+1 stands for the `not click outcome): we assume that for a learners action $mathbf{x}_t$, the user selects one of $K+1geq 2$ outcomes, say outcome $i$, with a multinomial logit (MNL) probabilistic model with corresponding unknown parameter $bar{boldsymboltheta}_{ast i}$. Each outcome $i$ is also associated with a revenue parameter $rho_i$ and the goal is to maximize the expected revenue. For this problem, we present MNL-UCB, an upper confidence bound (UCB)-based algorithm, that achieves regret $tilde{mathcal{O}}(dKsqrt{T})$ with small dependency on problem-dependent constants that can otherwise be arbitrarily large and lead to loose regret bounds. We present numerical simulations that corroborate our theoretical results.
Classic contextual bandit algorithms for linear models, such as LinUCB, assume that the reward distribution for an arm is modeled by a stationary linear regression. When the linear regression model is non-stationary over time, the regret of LinUCB ca n scale linearly with time. In this paper, we propose a novel multiscale changepoint detection method for the non-stationary linear bandit problems, called Multiscale-LinUCB, which actively adapts to the changing environment. We also provide theoretical analysis of regret bound for Multiscale-LinUCB algorithm. Experimental results show that our proposed Multiscale-LinUCB algorithm outperforms other state-of-the-art algorithms in non-stationary contextual environments.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا