ترغب بنشر مسار تعليمي؟ اضغط هنا

Inference for stochastic kinetic models from multiple data sources for joint estimation of infection dynamics from aggregate reports and virological data

95   0   0.0 ( 0 )
 نشر من قبل Yury Garcia
 تاريخ النشر 2017
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Influenza and respiratory syncytial virus (RSV) are the leading etiological agents of seasonal acute respiratory infections (ARI) around the world. Medical doctors typically base the diagnosis of ARI on patients symptoms alone, and do not always conduct virological tests necessary to identify individual viruses, which limits the ability to study the interaction between multiple pathogens and make public health recommendations. We consider a stochastic kinetic model (SKM) for two interacting ARI pathogens circulating in a large population and an empirically motivated background process for infections with other pathogens causing similar symptoms. An extended marginal sampling approach based on the Linear Noise Approximation to the SKM integrates multiple data sources and additional model components. We infer the parameters defining the pathogens dynamics and interaction within a Bayesian hierarchical model and explore the posterior trajectories of infections for each illness based on aggregate infection reports from six epidemic seasons collected by the state health department, and a subset of virological tests from a sentinel program at a general hospital in San Luis Potosi, Mexico. We interpret the results based on real and simulated data and make recommendations for future data collection strategies. Supplementary materials and software are provided online.



قيم البحث

اقرأ أيضاً

Influenza and respiratory syncytial virus (RSV) are the leading etiological agents of seasonal acute respiratory infections (ARI) around the world. Medical doctors typically base the diagnosis of ARI on patients symptoms alone and do not always condu ct virological tests necessary to identify individual viruses, which limits the ability to study the interaction between multiple pathogens and make public health recommendations. We consider a stochastic kinetic model (SKM) for two interacting ARI pathogens circulating in a large population and an empirically motivated background process for infections with other pathogens causing similar symptoms. An extended marginal sampling approach based on the Linear Noise Approximation to the SKM integrates multiple data sources and additional model components. We infer the parameters defining the pathogens dynamics and interaction within a Bayesian hierarchical model and explore the posterior trajectories of infections for each illness based on aggregate infection reports from six epidemic seasons collected by the state health department, and a subset of virological tests from a sentinel program at a general hospital in San Luis Potosi, Mexico. We interpret the results based on real and simulated data and make recommendations for future data collection strategies. Supplementary materials and software are provided online.
All pandemics are local; so learning about the impacts of pandemics on public health and related societal issues at granular levels is of great interest. COVID-19 is affecting everyone in the globe and mask wearing is one of the few precautions again st it. To quantify peoples perception of mask effectiveness and to prevent the spread of COVID-19 for small areas, we use Understanding America Studys (UAS) survey data on COVID-19 as our primary data source. Our data analysis shows that direct survey-weighted estimates for small areas could be highly unreliable. In this paper we develop a synthetic estimation method to estimate proportions of mask effectiveness for small areas using a logistic model that combines information from multiple data sources. We select our working model using an extensive data analysis facilitated by a new variable selection criterion for survey data and benchmarking ratios. We propose a Jackknife method to estimate variance of our proposed estimator. From our data analysis. it is evident that our proposed synthetic method outperforms direct survey-weighted estimator with respect to commonly used evaluation measures.
While it is well known that high levels of prenatal alcohol exposure (PAE) result in significant cognitive deficits in children, the exact nature of the dose response is less well understood. In particular, there is a pressing need to identify the le vels of PAE associated with an increased risk of clinically significant adverse effects. To address this issue, data have been combined from six longitudinal birth cohort studies in the United States that assessed the effects of PAE on cognitive outcomes measured from early school age through adolescence. Structural equation models (SEMs) are commonly used to capture the association among multiple observed outcomes in order to characterise the underlying variable of interest (in this case, cognition) and then relate it to PAE. However, it was not possible to apply classic SEM software in our context because different outcomes were measured in the six studies. In this paper we show how a Bayesian approach can be used to fit a multi-group multi-level structural model that maps cognition to a broad range of observed variables measured at multiple ages. These variables map to several different cognitive subdomains and are examined in relation to PAE after adjusting for confounding using propensity scores. The model also tests the possibility of a change point in the dose-response function.
Factor analysis is a flexible technique for assessment of multivariate dependence and codependence. Besides being an exploratory tool used to reduce the dimensionality of multivariate data, it allows estimation of common factors that often have an in teresting theoretical interpretation in real problems. However, standard factor analysis is only applicable when the variables are scaled, which is often inappropriate, for example, in data obtained from questionnaires in the field of psychology,where the variables are often categorical. In this framework, we propose a factor model for the analysis of multivariate ordered and non-ordered polychotomous data. The inference procedure is done under the Bayesian approach via Markov chain Monte Carlo methods. Two Monte-Carlo simulation studies are presented to investigate the performance of this approach in terms of estimation bias, precision and assessment of the number of factors. We also illustrate the proposed method to analyze participants responses to the Motivational State Questionnaire dataset, developed to study emotions in laboratory and field settings.
A general asymptotic theory is given for the panel data AR(1) model with time series independent in different cross sections. The theory covers the cases of stationary process, nearly non-stationary process, unit root process, mildly integrated, mild ly explosive and explosive processes. It is assumed that the cross-sectional dimension and time-series dimension are respectively $N$ and $T$. The results in this paper illustrate that whichever the process is, with an appropriate regularization, the least squares estimator of the autoregressive coefficient converges to a normal distribution with rate at least $O(N^{-1/3})$. Since the variance is the key to characterize the normal distribution, it is important to discuss the variance of the least squares estimator. We will show that when the autoregressive coefficient $rho$ satisfies $|rho|<1$, the variance declines at the rate $O((NT)^{-1/2})$, while the rate changes to $O(N^{-1/2}T^{-1})$ when $rho=1$ and $O(N^{-1/2}rho^{-T+2})$ when $|rho|>1$. $rho=1$ is the critical point where the convergence rate changes radically. The transition process is studied by assuming $rho$ depending on $T$ and going to $1$. An interesting phenomenon discovered in this paper is that, in the explosive case, the least squares estimator of the autoregressive coefficient has a standard normal limiting distribution in panel data case while it may not has a limiting distribution in univariate time series case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا